Project description:Background In this case report, we utilized a three-dimensional printing model to replicate the complex anatomy of a criss-cross heart with double outlet right ventricle—an extremely rare congenital cardiac abnormality. This approach facilitated our understanding of the patient's unique condition and enabled us to plan the surgical procedure with greater precision. Case presentation Our department received a 13-year-old female patient who presented with a pronounced heart murmur and a decrease in exercise capacity. Subsequent two-dimensional imaging revealed the presence of a criss-cross heart with double outlet right ventricle—an intricate and uncommon cardiac malformation that poses challenges for accurate visualization through conventional two-dimensional modalities. To address this challenge, we constructed and printed a three-dimensional model using computed tomography data, which enabled us to visualize and understand the complex intracardiac structures and plan surgical interventions with greater precision. Using this approach, we successfully performed a right ventricular double outlet repair, and the patient made a full recovery following the procedure. Conclusion The criss-cross heart with double outlet right ventricle constitutes a complex and uncommon cardiac anomaly that poses considerable challenges in terms of diagnosis and surgical intervention. Employing three-dimensional modeling and printing represents a promising approach, given its potential to enhance the precision and comprehensiveness of the anatomical evaluation of the heart. As a result, this method holds significant promise in facilitating accurate diagnosis, meticulous surgical planning, and ultimately improving clinical outcomes for patients affected by this condition.
Project description:Surgical procedures for double-outlet right ventricle with ventricular septal defect are based on rerouting the blood flow of the left ventricle to the aorta through the ventricular septal defect (VSD) with an intraventricular baffle. The right atriotomy is the most common approach combined with a right ventriculotomy in some cases, particularly in pulmonary stenosis association. However, in complex cases, this standard operative strategy may not provide an adequate exposure. We describe the transaortic approach as an alternative procedure to repair a complex case of double-outlet right ventricle (DORV) with subaortic stenosis.Supplementary informationThe online version contains supplementary material available at 10.1007/s12055-021-01261-7.
Project description:The individualized surgical approach in individuals with both arterial trunks arising from the morphologically right ventricle is dictated by the extreme morphological variability encountered in this setting, with each patient being unique. An individualized surgical approach has been designed to take account of the morphological variations, identifying the anatomy with the preoperative three-dimensional CT scan reconstruction. The key features have been considered the distance between tricuspid and pulmonary valves, the size and location of the interventricular communication, and the relationship between the outflow tracts. The surgical approach is tailored, whenever feasible, to create a connection between left ventricle and aorta, but primarily to achieve biventricular repair. Account has been taken of all available surgical options already reported in the literature, identifying the most suitable to provide the best outcomes for each unique morphology. To date, meaningful comparison between different reported surgical series has been difficult because of the marked variation of individual intracardiac morphology, and the lack of reports of specific surgical approaches for well-categorized groups of patients. Our approach, being tailored to the individual cardiac morphology, can be offered to any patient with this ventriculo-arterial connection. Given the difficulties of diagnosis, and the multiple therapeutic indications, very close collaboration between cardiologists and surgeons is indispensable for further progress in the understanding and management of this complex congenital cardiac lesion.
Project description:BackgroundDouble outlet right ventricle (DORV) describes a group of congenital heart defects where pulmonary artery and aorta originate completely or predominantly from the right ventricle. The individual anatomy of DORV patients varies widely with multiple subtypes classified. Although the majority of morphologies is suitable for biventricular repair (BVR), complex DORV anatomy can render univentricular palliation (UVP) the only option. Thus, patient-specific decision-making is critical for optimal surgical treatment planning. The evolution of image processing and rapid prototyping techniques facilitate the generation of detailed virtual and physical 3D models of the patient-specific anatomy which can support this important decision process within the Heart Team.Materilas and methodsThe individual cardiovascular anatomy of nine patients with complex DORV, in whom surgical decision-making was not straightforward, was reconstructed from either computed tomography or magnetic resonance imaging data. 3D reconstructions were used to characterize the morphologic details of DORV, such as size and location of the ventricular septal defect (VSD), atrioventricular valve size, ventricular volumes, relationship between the great arteries and their spatial relation to the VSD, outflow tract obstructions, coronary artery anatomy, etc. Additionally, physical models were generated. Virtual and physical models were used in the preoperative assessment to determine surgical treatment strategy, either BVR vs. UVP.ResultsMedian age at operation was 13.2 months (IQR: 9.6-24.0). The DORV transposition subtype was present in six patients, three patients had a DORV-ventricular septal defect subtype. Patient-specific reconstruction was feasible for all patients despite heterogeneous image quality. Complex BVR was feasible in 5/9 patients (55%). Reasons for unsuitability for BVR were AV valve chordae interfering with potential intraventricular baffle creation, ventricular hypoplasia and non-committed VSD morphology. Evaluation in particular of qualitative data from 3D models was considered to support comprehension of complex anatomy.ConclusionImage-based 3D reconstruction of patient-specific intracardiac anatomy provides valuable additional information supporting decision-making processes and surgical planning in complex cardiac malformations. Further prospective studies are required to fully appreciate the benefits of 3D technology.
Project description:ObjectiveThis population-based, comprehensive, retrospective study presented the clinical outcomes of all children born in Norway between 2003 and 2017 with double outlet right ventricle.MethodsAll children born with double outlet right ventricle between 2003 and 2017 were identified in the Oslo University Hospital registry. Patients' characteristics, interventions, complications, and deaths were recorded. Echocardiographic data were reviewed for classification according to current standards. We investigated time-dependent surgical reintervention and mortality using Kaplan-Meier analyses and determinants of treatment complications, reintervention, and death using regression analyses.ResultsNinety-three children with double outlet right ventricle represented an annual median prevalence of 1.18 per 10,000 births in Norway. Six children received palliative care. With an intention to treat, a surgical route with primary biventricular repair was followed for 62 children, staged biventricular repair for 15, and univentricular repair for 10 children. Major complications occurred in 1.0% and 6.2% children following catheter or surgical intervention, respectively. No significant determinants of the complications were identified. Overall survival following treatment was 91.9%, 90.8%, 89.5%, and 89.5% and corresponding freedom from surgical reintervention was 88.0%, 79.0%, 74.9%, and 69.4% at 1, 2, 5, and 10 years, respectively. The presence of atrioventricular septal defect predicted an increased risk of mortality (Hazard-Ratio: 7.16) but did not increase the risk of surgical reintervention.ConclusionIn Norway, most children receive tailored treatment for double outlet right ventricle with low rates of complications, surgical reinterventions, and mortality. However, atrioventricular septal defect remains a potential determinant of postoperative death.
Project description:Double outlet atrium is a rare cardiac anomaly wherein one of the atriums, most frequently the right atrium, opens into both the ventricles. Although seen more commonly in the setting of atrioventricular septal defect, this arrangement can also be found when one of the atrioventricular connections is atretic due to absence of the atrioventricular connection and the other atrioventricular valve straddles the muscular ventricular septum. It is the specific anatomy and connections of the atrioventricular junction that clarifies the situation and distinguishes between these two types of double outlet atrium. In this report, we present a case of double outlet right atrium co-existing with the absence of left atrioventricular connection. We then discuss the morphologic aspects of this interesting anomaly.
Project description:Defining the pathways that control cardiac development facilitates understanding the pathogenesis of congenital heart disease. Herein, we identify enrichment of a Cullin5 Ub ligase key subunit, Asb2, in myocardial progenitors and differentiated cardiomyocytes. Using two conditional murine knockouts, Nkx+/Cre.Asb2fl/fl and AHF-Cre.Asb2fl/fl, and tissue clarifying technique, we reveal Asb2 requirement for embryonic survival and complete heart looping. Deletion of Asb2 results in upregulation of its target Filamin A (Flna), and concurrent Flna deletion partially rescues embryonic lethality. Conditional AHF-Cre.Asb2 knockouts harboring one Flna allele have double outlet right ventricle (DORV), which is rescued by biallelic Flna excision. Transcriptomic and immunofluorescence analyses identify Tgfβ/Smad as downstream targets of Asb2/Flna. Finally, using CRISPR/Cas9 genome editing, we demonstrate Asb2 requirement for human cardiomyocyte differentiation suggesting a conserved mechanism between mice and humans. Collectively, our study provides deeper mechanistic understanding of the role of the ubiquitin proteasome system in cardiac development and suggests a previously unidentified murine model for DORV.
Project description:BackgroundDouble-outlet right ventricle (DORV) with a restrictive ventricular septum is a rare but highly morbid phenomenon that can be complicated by progressive left ventricular hypertrophy, arrhythmias, aneurysm formation, severe pulmonary hypertension, and death in the newborn. Surgical creation or enlargement of a ventricular septal defect (VSD) is palliative but may damage the conduction system or the atrioventricular valves in the newborn. This report presents a transcatheter approach to palliation for a newborn that had DORV with a restrictive ventricular septum.Methods/resultsA full-term infant girl (2.9 kg) referred for hypoxia (80% with room air) and murmur was found to have DORV, interrupted inferior vena cava, and restrictive VSD (95-mmHg gradient). Transhepatic access was performed, and an internal mammary (IM) catheter was advanced through the atrial septal defect and into the left ventricle. By transesophageal echocardiographic guidance, a Baylis radiofrequency perforation wire was used to cross the ventricular septum, and the defect was enlarged using a 4-mm cutting balloon. A bare metal stent then was deployed to maintain the newly created VSD. The patient did well after the procedure but required pulmonary artery banding 4 days later. She returned 5 months later with cyanosis and the development of obstructing right ventricle muscle bundles, requiring further surgical palliation.ConclusionsThis report describes the first transcatheter creation of VSD in DORV with a restrictive ventricular septum in a newborn infant. Use of the radiofrequency catheter in combination with cutting balloon dilation and stent implantation is an efficient method for creating a VSD in such a patient.