Project description:BackgroundThe precise details of atrial activation around the triangle of Koch (ToK) remain unknown. We evaluated the relationship between the atrial-activation pattern around the ToK and success sites for slow-pathway (SP) modification ablation in slow-fast atrioventricular reentrant tachycardia (AVNRT).MethodsThirty patients with slow-fast AVNRT who underwent successful ablation were enrolled. Atrial activation around the ToK during sinus rhythm was investigated using ultra-high-density mapping pre-ablation. The relationships among features of atrial-activation pattern and success sites were examined.ResultsOf 30 patients (22 cryoablation; 8 radiofrequency ablation), 26 patients had a collision site of two wavefronts of delayed atrial activation within ToK, indicating a success site. The activation-search function of Lumipoint software, which highlights only atrial activation with a spatiotemporal consistency, showed non-highlighted area on the tricuspid-annulus side of ToK. In 23 of the patients, a spiky potential was recorded at that collision site outside the Lumipoint-highlighted area. Fifteen cryoablation patients with a success site coincident with a collision site outside the Lumipoint-highlighted area had significantly more frequent disappearances of SP after initial cryoablation (46.7% vs. 0%, p = .029), fewer cryoablations (3.7 ± 1.8 vs. 5.3 ± 1.3, p = .045), and shorter procedure times (170 ± 57 vs. 228 ± 91 min, p = .082) compared to the seven cryoablation patients without such sites. Four patients had transient AV block by ablation inside the Lumipoint-highlighted area with fractionated signals, but no patient developed permanent AV block or recurrence post-procedure (median follow-up: 375 days).ConclusionsSP modification ablation at the collision site of atrial activation of the tricuspid-annulus side along with a spiky potential could provide a better outcome.
Project description:BackgroundRadiofrequency (RF) ablation of typical atrioventricular nodal reentrant tachycardia (tAVNRT) is performed without revealing out the location of antegrade slow pathway (ASp). In this study, we studied a new electrophysiological method of identifying the site of ASp.MethodsThis study included 19 patients. Repeated series of very high-output single extrastimulations (VhoSESts) were delivered at the anatomical slow pathway region during tAVNRT. Tachycardia cycle length (TCL), coupling interval (CI), and return cycle (RC) were measured and the prematurity of VhoSESts [ΔPM (= TCL - CI)] and the prolongation of RCs [ΔPL (= RC - TCL)] were calculated. Pacing sites were classified into two categories: (i) ASp capture sites [DSPC(+) sites], where two different RCs were shown, and ASp non-capture sites [DSPC(-) sites], where only one RC was shown. RF ablation was performed at DSPC(+) sites and/or sites with catheter-induced mechanical trauma (CIMT) to ASp.ResultsDSPC(+) sites were shown in 13 patients (68%). RF ablation was successful in all patients without any degree of atrioventricular block nor recurrence. Total number of RF applications was 1.8 ± 1.1. Minimal distance between successful ablation sites and DSPC(+)/CIMT sites and His bundle (HB) electrogram recording sites was 1.9 ± 0.8 mm and 19.8 ± 6.1 mm, respectively. ΔPL of more than 92.5 ms, ΔPL/TCL of more than 0.286, and ΔPL/ΔPM of more than 1.565 could identify ASp with sensitivity of 100%, 91.1%, and 88.9% and specificity of 92.9%, 97.0%, and 97.6%, respectively.ConclusionsSites with ASp capture and CIMT were close to successful ablation sites and could be useful indicators of tAVNRT ablation.
Project description:Cryoablation of slow pathway doesn't usually cause junctional beats. If this occurs, the nearness to AV compact node is supposed. 3d electroanatomical mapping during this unusual finding may help to clarify the relationship between junctional beats (JBs) during cryomapping/cryoablation and Koch's triangle.
Project description:(1) Background: The panoramic view of a novel wide-band dielectric mapping system could show the individual anatomy. We aimed to compare the feasibility, efficacy and safety of the panoramic view guided approach for ablation of AVNRT with the conventional approach. (2) Methods: Ablation distributions in eight patients were retrospectively analyzed using the panoramic view. The para-slow-pathway (para-SP) region was divided into three regions, and the region that most frequently appeared with the appropriate junctional rhythm or eliminated the slow-pathway was defined as the adaptive slow-pathway (aSP) region. Twenty patients with AVNRT were then ablated in the aSP region under the panoramic view and compared with 40 patients using the conventional approach. (3) Results: Thirty ablation points were analyzed. The majority of effective points (95.0%) were located in the inferior and anterior portions of the para-SP region and defined as the aSP region. Baseline characteristics, fluoroscopic duration, and mean number of ablations were similar among the two groups. The panoramic view group had a significantly higher percentage of appropriate junctional rhythm (81.9% ± 26.0% vs. 55.7% ± 30.5%, p = 0.002) than the conventional group. (4) Conclusions: The use of the panoramic view for AVNRT ablation achieved similar clinical endpoints with higher ablation efficiency than the conventional approach.