Project description:ImportanceEfforts to track the severity and public health impact of coronavirus disease 2019 (COVID-19) in the United States have been hampered by state-level differences in diagnostic test availability, differing strategies for prioritization of individuals for testing, and delays between testing and reporting. Evaluating unexplained increases in deaths due to all causes or attributed to nonspecific outcomes, such as pneumonia and influenza, can provide a more complete picture of the burden of COVID-19.ObjectiveTo estimate the burden of all deaths related to COVID-19 in the United States from March to May 2020.Design, setting, and populationThis observational study evaluated the numbers of US deaths from any cause and deaths from pneumonia, influenza, and/or COVID-19 from March 1 through May 30, 2020, using public data of the entire US population from the National Center for Health Statistics (NCHS). These numbers were compared with those from the same period of previous years. All data analyzed were accessed on June 12, 2020.Main outcomes and measuresIncreases in weekly deaths due to any cause or deaths due to pneumonia/influenza/COVID-19 above a baseline, which was adjusted for time of year, influenza activity, and reporting delays. These estimates were compared with reported deaths attributed to COVID-19 and with testing data.ResultsThere were approximately 781 000 total deaths in the United States from March 1 to May 30, 2020, representing 122 300 (95% prediction interval, 116 800-127 000) more deaths than would typically be expected at that time of year. There were 95 235 reported deaths officially attributed to COVID-19 from March 1 to May 30, 2020. The number of excess all-cause deaths was 28% higher than the official tally of COVID-19-reported deaths during that period. In several states, these deaths occurred before increases in the availability of COVID-19 diagnostic tests and were not counted in official COVID-19 death records. There was substantial variability between states in the difference between official COVID-19 deaths and the estimated burden of excess deaths.Conclusions and relevanceExcess deaths provide an estimate of the full COVID-19 burden and indicate that official tallies likely undercount deaths due to the virus. The mortality burden and the completeness of the tallies vary markedly between states.
Project description:ObjectivesExcess deaths, an indicator that compares total mortality rates before and during a pandemic, offer a comprehensive view of the pandemic's impact. However, discrepancies may arise from variations in estimating expected deaths. This study aims to compare excess deaths in Korea during the coronavirus disease 2019 pandemic using 3 methods and to analyze patterns using the most appropriate method.MethodsExpected deaths from 2020 to 2022 were estimated using mortality data from 2015-2019 as reference years. This estimation employed 3 approaches: (1) simple average, (2) age-adjusted average, and (3) age-adjusted linear regression. Excess deaths by age, gender, and cause of death were also presented.ResultsThe number of excess deaths varied depending on the estimation method used, reaching its highest point with the simple average and its lowest with the age-adjusted average. Age-adjusted linear regression, which accounts for both the aging population and declining mortality rates, was considered most appropriate. Using this model, excess deaths were estimated at 0.3% for 2020, 4.0% for 2021, and 20.7% for 2022. Excess deaths surged among individuals in their 20s throughout the pandemic, largely attributed to a rise in self-harm and suicide. Additionally, the results indicated sharp increases in deaths associated with "endocrine, nutritional, and metabolic diseases" and "symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified."ConclusionsSubstantial variations in excess deaths were evident based on estimation method, with a notable increase in 2022. The heightened excess deaths among young adults and specific causes underscore key considerations for future pandemic responses.
Project description:We estimated the impact of the COVID-19 pandemic on mortality in Brazil for 2020 and 2021 years. We used mortality data (2015-2021) from the Brazilian Health Ministry for forecasting baseline deaths under non-pandemic conditions and to estimate all-cause excess deaths at the country level and stratified by sex, age, ethnicity and region of residence, from March 2020 to December 2021. We also considered the estimation of excess deaths due to specific causes. The estimated all-cause excess deaths were 187 842 (95% PI: 164 122; 211 562, P-Score = 16.1%) for weeks 10-53, 2020, and 441 048 (95% PI: 411 740; 470 356, P-Score = 31.9%) for weeks 1-52, 2021. P-Score values ranged from 1.4% (RS, South) to 38.1% (AM, North) in 2020 and from 21.2% (AL and BA, Northeast) to 66.1% (RO, North) in 2021. Differences among men (18.4%) and women (13.4%) appeared in 2020 only, and the P-Score values were about 30% for both sexes in 2021. Except for youngsters (< 20 years old), all adult age groups were badly hit, especially those from 40 to 79 years old. In 2020, the Indigenous, Black and East Asian descendants had the highest P-Score (26.2 to 28.6%). In 2021, Black (34.7%) and East Asian descendants (42.5%) suffered the greatest impact. The pandemic impact had enormous regional heterogeneity and substantial differences according to socio-demographic factors, mainly during the first wave, showing that some population strata benefited from the social distancing measures when they could adhere to them. In the second wave, the burden was very high for all but extremely high for some, highlighting that our society must tackle the health inequalities experienced by groups of different socio-demographic statuses.
Project description:Background and objectivesThe official number of daily cases and deaths are the most prominent indicators used to plan actions against the COVID-19 pandemic but are insufficient to see the real impact. Official numbers vary due to testing policy, reporting methods, etc. Therefore, critical interventions are likely to lose their effectiveness and better-standardized indicators like excess deaths/mortality are needed. In this study, excess deaths in Istanbul were examined and a web-based monitor was developed.MethodsDaily all-cause deaths data between January 1, 2015- November 11, 2021 in Istanbul is used to estimate the excess deaths. Compared to the pre-pandemic period, the % increase in the number of deaths was calculated as the ratio of excess deaths to expected deaths (P-Scores). The ratio of excess deaths to official figures (T) was also examined.ResultsThe total number of official and excess deaths in Istanbul are 24.218 and 37.514, respectively. The ratio of excess deaths to official deaths is 1.55. During the first three death waves, maximum P-Scores were 71.8, 129.0, and 116.3% respectively.ConclusionExcess mortality in Istanbul is close to the peak scores in Europe. 38.47% of total excess deaths could be considered as underreported or indirect deaths. To re-optimize the non-pharmaceutical interventions there is a need to monitor the real impact beyond the official figures. In this study, such a monitoring tool was created for Istanbul. The excess deaths are more reliable than official figures and it can be used as a gold standard to estimate the impact more precisely.
Project description:AimsCardiovascular diseases (CVDs) increase mortality risk from coronavirus infection (COVID-19). There are also concerns that the pandemic has affected supply and demand of acute cardiovascular care. We estimated excess mortality in specific CVDs, both 'direct', through infection, and 'indirect', through changes in healthcare.Methods and resultsWe used (i) national mortality data for England and Wales to investigate trends in non-COVID-19 and CVD excess deaths; (ii) routine data from hospitals in England (n = 2), Italy (n = 1), and China (n = 5) to assess indirect pandemic effects on referral, diagnosis, and treatment services for CVD; and (iii) population-based electronic health records from 3 862 012 individuals in England to investigate pre- and post-COVID-19 mortality for people with incident and prevalent CVD. We incorporated pre-COVID-19 risk (by age, sex, and comorbidities), estimated population COVID-19 prevalence, and estimated relative risk (RR) of mortality in those with CVD and COVID-19 compared with CVD and non-infected (RR: 1.2, 1.5, 2.0, and 3.0).Mortality data suggest indirect effects on CVD will be delayed rather than contemporaneous (peak RR 1.14). CVD service activity decreased by 60-100% compared with pre-pandemic levels in eight hospitals across China, Italy, and England. In China, activity remained below pre-COVID-19 levels for 2-3 months even after easing lockdown and is still reduced in Italy and England. For total CVD (incident and prevalent), at 10% COVID-19 prevalence, we estimated direct impact of 31 205 and 62 410 excess deaths in England (RR 1.5 and 2.0, respectively), and indirect effect of 49 932 to 99 865 deaths.ConclusionSupply and demand for CVD services have dramatically reduced across countries with potential for substantial, but avoidable, excess mortality during and after the pandemic.
Project description:INTRODUCTION:During the COVID-19 pandemic, excess mortality has been reported, while hospitalisations for acute cardiovascular events reduced. Brazil is the second country with more deaths due to COVID-19. We aimed to evaluate excess cardiovascular mortality during COVID-19 pandemic in 6 Brazilian capital cities. METHODS:Using the Civil Registry public database, we evaluated total and cardiovascular excess deaths, further stratified in specified cardiovascular deaths (acute coronary syndromes and stroke) and unspecified cardiovascular deaths in the 6 Brazilian cities with greater number of COVID-19 deaths (São Paulo, Rio de Janeiro, Fortaleza, Recife, Belém, Manaus). We compared observed with expected deaths from epidemiological weeks 12-22 of 2020. We also compared the number of hospital and home deaths during the period. RESULTS:There were 65?449 deaths and 17 877 COVID-19 deaths in the studied period and cities for 2020. Cardiovascular mortality increased in most cities, with greater magnitude in the Northern capitals. However, while there was a reduction in specified cardiovascular deaths in the most cities, the Northern capitals showed an increase of these events. For unspecified cardiovascular deaths, there was a marked increase in all cities, which strongly correlated to the rise in home deaths (r=0.86, p=0.01). CONCLUSION:Excess cardiovascular mortality was greater in the less developed cities, possibly associated with healthcare collapse. Specified cardiovascular deaths decreased in the most developed cities, in parallel with an increase in unspecified cardiovascular and home deaths, presumably as a result of misdiagnosis. Conversely, specified cardiovascular deaths increased in cities with a healthcare collapse.
Project description:Accurately counting the human cost of the COVID-19 at both the national and regional level is a policy priority. The Russian Federation currently reports one of the higher COVID-19 mortality rates in the world; but estimates of mortality differ significantly. Using a statistical method accounting for changes in the population age structure, we present the first national and regional estimates of excess mortality for 2021; calculations of excess mortality by age, gender, and urban/rural status for 2020; and mean remaining years of life expectancy lost at the regional level. We estimate that there were 351,158 excess deaths in 2020 and 678,022 in 2021 in the Russian Federation; and, in 2020, around 2.0 years of life expectancy lost. While the Russian Federation exhibits very high levels of excess mortality compared to other countries, there is a wide degree of regional variation: in 2021, excess deaths expressed as a percentage of expected deaths at the regional level range from 27% to 52%. Life expectancy loss is generally greater for males; while excess mortality is greater in urban areas. For Russia as whole, an average person who died due to the pandemic in 2020 would have otherwise lived for a further 14 more years (and as high as 18 years in some regions), disproving the widely held view that excess mortality during the pandemic period was concentrated among those with few years of life remaining-especially for females. At a regional level, less densely populated, more remote regions, rural regions appear to have fared better regarding excess mortality and life expectancy loss-however, a part of this differential could be owing to measurement issues. The calculations demonstrate more clearly the true degree of the human cost of the pandemic in the Russian Federation.
Project description:BackgroundThe COVID-19 pandemic disrupted malaria-related health care services, leading to an excess burden of malaria. However, there is a lack of research on the indirect global impact of the COVID-19 pandemic on malaria. We aimed to assess the excess burden of malaria due to the COVID-19 pandemic in malaria-endemic countries in 2020.MethodsBased on data from the World Health Organization Global Observatory, we used estimated annual percentage changes (EAPCs) from 2000 to 2019 (model A) and from 2015 to 2019 (model B) to predict the malaria burden in 2020. We calculated the ratios between reported and predicted malaria incidence (incidence rate ratio (IRR)) and mortality rates (mortality rate ratio (MRR)).ResultsIn 2020, African countries suffered the most from malaria, with the largest number of malaria cases (64.7 million) and deaths (151 thousand) observed in Nigeria. Most countries showed a decrease in malaria incidence and mortality rates from 2000 to 2019, with the strongest decline in incidence rates in Bhutan (EAPC = -35.7%, 95% CI = -38.7 to -32.5%) and mortality rates Ecuador (EAPC = -40.6%, 95% confidence interval (CI) = -46.6 to -33.8%). During the COVID-19 pandemic in 2020, there was a total of 18 million excess malaria cases and 83 291 excess deaths per model A, and 7.4 million excess cases and 33 528 excess deaths per model B globally. Malaria incidence rates increased excessively in over 50% of the malaria-endemic countries, with the greatest increase in Costa Rica (IRR = 35.6) per model A and Bhutan (IRR = 15.6) per model B. Mortality rates had increased excessively in around 70% of the malaria-endemic countries, with the greatest increase in Ecuador in both model A (MRR = 580) and model B (MRR = 58).ConclusionsThe emergence of the COVID-19 pandemic indirectly caused an increase in the prevalence of malaria and thwarted progress in malaria control. Global efforts to control the pandemic's impact should be balanced with malaria control to ensure that the goal for global malaria elimination is achieved on time.
Project description:BackgroundCOVID-19 mortality, excess mortality, deaths per million population (DPM), infection fatality ratio (IFR) and case fatality ratio (CFR) are reported and compared for many countries globally. These measures may appear objective, however, they should be interpreted with caution.AimWe examined reported COVID-19-related mortality in Belgium from 9 March 2020 to 28 June 2020, placing it against the background of excess mortality and compared the DPM and IFR between countries and within subgroups.MethodsThe relation between COVID-19-related mortality and excess mortality was evaluated by comparing COVID-19 mortality and the difference between observed and weekly average predictions of all-cause mortality. DPM were evaluated using demographic data of the Belgian population. The number of infections was estimated by a stochastic compartmental model. The IFR was estimated using a delay distribution between infection and death.ResultsIn the study period, 9,621 COVID-19-related deaths were reported, which is close to the excess mortality estimated using weekly averages (8,985 deaths). This translates to 837 DPM and an IFR of 1.5% in the general population. Both DPM and IFR increase with age and are substantially larger in the nursing home population.DiscussionDuring the first pandemic wave, Belgium had no discrepancy between COVID-19-related mortality and excess mortality. In light of this close agreement, it is useful to consider the DPM and IFR, which are both age, sex, and nursing home population-dependent. Comparison of COVID-19 mortality between countries should rather be based on excess mortality than on COVID-19-related mortality.