Unknown

Dataset Information

0

Target-based fusion using social determinants of health to enhance suicide prediction with electronic health records.


ABSTRACT:

Objective

Preventing suicide in US youth is of paramount concern, with rates increasing over 50% between 2007 and 2018. Statistical modeling using electronic health records may help identify at-risk youth before a suicide attempt. While electronic health records contain diagnostic information, which are known risk factors, they generally lack or poorly document social determinants (e.g., social support), which are also known risk factors. If statistical models are built incorporating not only diagnostic records, but also social determinants measures, additional at-risk youth may be identified before a suicide attempt.

Methods

Suicide attempts were predicted in hospitalized patients, ages 10-24, from the State of Connecticut's Hospital Inpatient Discharge Database (HIDD; N = 38943). Predictors included demographic information, diagnosis codes, and using a data fusion framework, social determinants features transferred or fused from an external source of survey data, The National Longitudinal Study of Adolescent to Adult Health (Add Health). Social determinant information for each HIDD patient was generated by averaging values from their most similar Add Health individuals (e.g., top 10), based upon matching shared features between datasets (e.g., Pearson's r). Attempts were then modelled using an elastic net logistic regression with both HIDD features and fused Add Health features.

Results

The model including fused social determinants outperformed the conventional model (AUC = 0.83 v. 0.82). Sensitivity and positive predictive values at 90 and 95% specificity were almost 10% higher when including fused features (e.g., sensitivity at 90% specificity = 0.48 v. 0.44). Among social determinants variables, the perception that their mother cares and being non-religious appeared particularly important to performance improvement.

Discussion

This proof-of-concept study showed that incorporating social determinants measures from an external survey database could improve prediction of youth suicide risk from clinical data using a data fusion framework. While social determinant data directly from patients might be ideal, estimating these characteristics via data fusion avoids the task of data collection, which is generally time-consuming, expensive, and suffers from non-compliance.

SUBMITTER: Sacco SJ 

PROVIDER: S-EPMC10132649 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

Target-based fusion using social determinants of health to enhance suicide prediction with electronic health records.

Sacco Shane J SJ   Chen Kun K   Wang Fei F   Aseltine Robert R  

PloS one 20230426 4


<h4>Objective</h4>Preventing suicide in US youth is of paramount concern, with rates increasing over 50% between 2007 and 2018. Statistical modeling using electronic health records may help identify at-risk youth before a suicide attempt. While electronic health records contain diagnostic information, which are known risk factors, they generally lack or poorly document social determinants (e.g., social support), which are also known risk factors. If statistical models are built incorporating not  ...[more]

Similar Datasets

| S-EPMC7518826 | biostudies-literature
| S-EPMC7671639 | biostudies-literature
| S-EPMC10781957 | biostudies-literature
| S-EPMC8569826 | biostudies-literature
| S-EPMC7693189 | biostudies-literature
| S-EPMC8796020 | biostudies-literature
| S-EPMC8276667 | biostudies-literature
| S-EPMC8633615 | biostudies-literature
| S-EPMC6167136 | biostudies-literature
| S-EPMC10503594 | biostudies-literature