Unknown

Dataset Information

0

Saturated and Polyunsaturated Fatty Acids Production by Aurantiochytrium limacinum PKU#Mn4 on Enteromorpha Hydrolysate.


ABSTRACT: Thraustochytrids are unicellular marine heterotrophic protists, which have recently shown a promising ability to produce omega-3 fatty acids from lignocellulosic hydrolysates and wastewaters. Here we studied the biorefinery potential of the dilute acid-pretreated marine macroalgae (Enteromorpha) in comparison with glucose via fermentation using a previously isolated thraustochytrid strain (Aurantiochytrium limacinum PKU#Mn4). The total reducing sugars in the Enteromorpha hydrolysate accounted for 43.93% of the dry cell weight (DCW). The strain was capable of producing the highest DCW (4.32 ± 0.09 g/L) and total fatty acids (TFA) content (0.65 ± 0.03 g/L) in the medium containing 100 g/L of hydrolysate. The maximum TFA yields of 0.164 ± 0.160 g/g DCW and 0.196 ± 0.010 g/g DCW were achieved at 80 g/L of hydrolysate and 40 g/L of glucose in the fermentation medium, respectively. Compositional analysis of TFA revealed the production of equivalent fractions (% TFA) of saturated and polyunsaturated fatty acids in hydrolysate or glucose medium. Furthermore, the strain yielded a much higher fraction (2.61-3.22%) of eicosapentaenoic acid (C20:5n-3) in the hydrolysate medium than that (0.25-0.49%) in the glucose medium. Overall, our findings suggest that Enteromorpha hydrolysate can be a potential natural substrate in the fermentative production of high-value fatty acids by thraustochytrids.

SUBMITTER: He Y 

PROVIDER: S-EPMC10143273 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Saturated and Polyunsaturated Fatty Acids Production by <i>Aurantiochytrium limacinum</i> PKU#Mn4 on <i>Enteromorpha</i> Hydrolysate.

He Yaodong Y   Zhu Xingyu X   Ning Yaodong Y   Chen Xiaohong X   Sen Biswarup B   Wang Guangyi G  

Marine drugs 20230323 4


Thraustochytrids are unicellular marine heterotrophic protists, which have recently shown a promising ability to produce omega-3 fatty acids from lignocellulosic hydrolysates and wastewaters. Here we studied the biorefinery potential of the dilute acid-pretreated marine macroalgae (<i>Enteromorpha</i>) in comparison with glucose via fermentation using a previously isolated thraustochytrid strain (<i>Aurantiochytrium limacinum</i> PKU#Mn4). The total reducing sugars in the <i>Enteromorpha</i> hyd  ...[more]

Similar Datasets

| S-EPMC8541261 | biostudies-literature
| S-EPMC9605394 | biostudies-literature
| S-EPMC10068736 | biostudies-literature
| S-EPMC7766940 | biostudies-literature
| S-EPMC8708202 | biostudies-literature
| PRJNA758196 | ENA
| PRJNA590015 | ENA
| PRJNA70509 | ENA
| PRJNA1057567 | ENA
2009-11-01 | E-MTAB-65 | biostudies-arrayexpress