A coarse-grained molecular dynamics investigation on spontaneous binding of Aβ1-40 fibrils with cholesterol-mixed DPPC bilayers.
Ontology highlight
ABSTRACT: Alzheimer's disease is the most common form of dementia. Its aetiology is characterized by the misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet-rich Aβ oligomers/fibrils. Although multiple experimental studies have suggested that Aβ oligomers/fibrils interact with the cell membranes and perturb their structures and dynamics, the molecular mechanism of this interaction is still not fully understood. In the present work, we have performed a total of 120 μs-long simulations to investigate the interaction between trimeric or hexameric Aβ1-40 fibrils with either a 100% DPPC bilayer, a 70% DPPC-30% cholesterol bilayer or a 50% DPPC-50% cholesterol bilayer. Our simulation data capture the spontaneous binding of the aqueous Aβ1-40 fibrils with the membranes and show that the central hydrophobic amino acid cluster, the lysine residue adjacent to it and the C-terminal hydrophobic residues are all involved in the process. Moreover, our data show that while the Aβ1-40 fibril does not bind to the 100% DPPC bilayer, its binding affinity for the membrane increases with the amount of cholesterol. Overall, our data suggest that two clusters of hydrophobic residues and one lysine help Aβ1-40 fibrils establish stable interactions with a cholesterol-rich DPPC bilayer. These residues are likely to represent potential target regions for the design of inhibitors, thus opening new avenues in structure-based drug design against Aβ oligomer/fibril-membrane interaction.
SUBMITTER: Agrawal N
PROVIDER: S-EPMC10151222 | biostudies-literature | 2023
REPOSITORIES: biostudies-literature
ACCESS DATA