Unknown

Dataset Information

0

Explainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed hands.


ABSTRACT: The clock drawing test is a simple and inexpensive method to screen for cognitive frailties, including dementia. In this study, we used the relevance factor variational autoencoder (RF-VAE), a deep generative neural network, to represent digitized clock drawings from multiple institutions using an optimal number of disentangled latent factors. The model identified unique constructional features of clock drawings in a completely unsupervised manner. These factors were examined by domain experts to be novel and not extensively examined in prior research. The features were informative, as they distinguished dementia from non-dementia patients with an area under receiver operating characteristic (AUC) of 0.86 singly, and 0.96 when combined with participants' demographics. The correlation network of the features depicted the "typical dementia clock" as having a small size, a non-circular or "avocado-like" shape, and incorrectly placed hands. In summary, we report a RF-VAE network whose latent space encoded novel constructional features of clocks that classify dementia from non-dementia patients with high performance.

SUBMITTER: Bandyopadhyay S 

PROVIDER: S-EPMC10164161 | biostudies-literature | 2023 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Explainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed hands.

Bandyopadhyay Sabyasachi S   Wittmayer Jack J   Libon David J DJ   Tighe Patrick P   Price Catherine C   Rashidi Parisa P  

Scientific reports 20230506 1


The clock drawing test is a simple and inexpensive method to screen for cognitive frailties, including dementia. In this study, we used the relevance factor variational autoencoder (RF-VAE), a deep generative neural network, to represent digitized clock drawings from multiple institutions using an optimal number of disentangled latent factors. The model identified unique constructional features of clock drawings in a completely unsupervised manner. These factors were examined by domain experts t  ...[more]

Similar Datasets

| S-EPMC10212082 | biostudies-literature
| S-EPMC1939838 | biostudies-literature
| S-EPMC5292943 | biostudies-literature
| S-EPMC10789766 | biostudies-literature
2019-11-13 | GSE140262 | GEO
| S-EPMC11688459 | biostudies-literature
| S-EPMC8792862 | biostudies-literature
| S-EPMC5553557 | biostudies-literature
| S-EPMC3956069 | biostudies-literature
| S-EPMC4032738 | biostudies-other