Unknown

Dataset Information

0

Recruitment of the SNX17-Retriever recycling pathway regulates synaptic function and plasticity.


ABSTRACT: Trafficking of cell-surface proteins from endosomes to the plasma membrane is a key mechanism to regulate synaptic function. In non-neuronal cells, proteins recycle to the plasma membrane either via the SNX27-Retromer-WASH pathway or via the recently discovered SNX17-Retriever-CCC-WASH pathway. While SNX27 is responsible for the recycling of key neuronal receptors, the roles of SNX17 in neurons are less understood. Here, using cultured hippocampal neurons, we demonstrate that the SNX17 pathway regulates synaptic function and plasticity. Disruption of this pathway results in a loss of excitatory synapses and prevents structural plasticity during chemical long-term potentiation (cLTP). cLTP drives SNX17 recruitment to synapses, where its roles are in part mediated by regulating the surface expression of β1-integrin. SNX17 recruitment relies on NMDAR activation, CaMKII signaling, and requires binding to the Retriever and PI(3)P. Together, these findings provide molecular insights into the regulation of SNX17 at synapses and define key roles for SNX17 in synaptic maintenance and in regulating enduring forms of synaptic plasticity.

SUBMITTER: Rivero-Rios P 

PROVIDER: S-EPMC10165670 | biostudies-literature | 2023 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Recruitment of the SNX17-Retriever recycling pathway regulates synaptic function and plasticity.

Rivero-Ríos Pilar P   Tsukahara Takao T   Uygun Tunahan T   Chen Alex A   Chavis Garrett D GD   Giridharan Sai Srinivas Panapakkam SSP   Iwase Shigeki S   Sutton Michael A MA   Weisman Lois S LS  

The Journal of cell biology 20230504 7


Trafficking of cell-surface proteins from endosomes to the plasma membrane is a key mechanism to regulate synaptic function. In non-neuronal cells, proteins recycle to the plasma membrane either via the SNX27-Retromer-WASH pathway or via the recently discovered SNX17-Retriever-CCC-WASH pathway. While SNX27 is responsible for the recycling of key neuronal receptors, the roles of SNX17 in neurons are less understood. Here, using cultured hippocampal neurons, we demonstrate that the SNX17 pathway r  ...[more]

Similar Datasets

| S-EPMC4230724 | biostudies-literature
| S-EPMC11772769 | biostudies-literature
| S-SCDT-10_1038-S44319-024-00340-1 | biostudies-other
| S-EPMC10980035 | biostudies-literature
| S-EPMC11589680 | biostudies-literature
| S-EPMC5382714 | biostudies-literature
| S-EPMC5710002 | biostudies-literature
| S-EPMC2900641 | biostudies-literature
| S-EPMC7880878 | biostudies-literature
| S-EPMC5010778 | biostudies-literature