Project description:Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) is a rare autosomal recessive multisystemic disease with a prevalence of < 1/1 000 000. The wide spectrum of symptoms and associated diseases makes the diagnosis of this disease particularly challenging. Here, we report a 12-year-old Bahraini male who presented with the core clinical features of IMNEPD including intellectual disability, global developmental delay, sensorineural hearing loss, endocrine dysfunction, and exocrine pancreatic insufficiency. The diagnosis was confirmed by genetic testing using whole exome sequencing. This is the first reported case of IMNEPD from Bahrain and was found to have a novel homozygous peptidyl-tRNA hydrolase 2 (PTRH2) gene mutation (NM_001015509.2: c.370del p.(Glu124Lysfs*4)). Moreover, we conducted an extensive literature review with an emphasis on the variable clinical spectrum and genotypes of previously reported patients in comparison to our case.
Project description:Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) has been recently linked to biallelic mutation of the peptidyl-tRNA hydrolase 2 gene PTRH2. Two index patients with IMNEPD in the original report had multiple neurological symptoms such as postnatal microcephaly, intellectual disability, developmental delay, sensorineural deafness, cerebellar atrophy, ataxia, and peripheral neuropathy. In addition, distal muscle weakness and abnormalities of thyroid, pancreas, and liver were found. Here, we report five further IMNEPD patients with a different homozygous PTRH2 mutation, broaden the phenotypic spectrum of the disease and differentiate common symptoms and interindividual variability in IMNEPD associated with a unique mutation. We thereby hope to better define IMNEPD and promote recognition and diagnosis of this novel disease entity.
Project description:ObjectiveTo identify the cause of a so-far unreported phenotype of infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD).MethodsWe characterized a consanguineous family of Yazidian-Turkish descent with IMNEPD. The two affected children suffer from intellectual disability, postnatal microcephaly, growth retardation, progressive ataxia, distal muscle weakness, peripheral demyelinating sensorimotor neuropathy, sensorineural deafness, exocrine pancreas insufficiency, hypothyroidism, and show signs of liver fibrosis. We performed whole-exome sequencing followed by bioinformatic analysis and Sanger sequencing on affected and unaffected family members. The effect of mutations in the candidate gene was studied in wild-type and mutant mice and in patient and control fibroblasts.ResultsIn a consanguineous family with two individuals with IMNEPD, we identified a homozygous frameshift mutation in the previously not disease-associated peptidyl-tRNA hydrolase 2 (PTRH2) gene. PTRH2 encodes a primarily mitochondrial protein involved in integrin-mediated cell survival and apoptosis signaling. We show that PTRH2 is highly expressed in the developing brain and is a key determinant in maintaining cell survival during human tissue development. Moreover, we link PTRH2 to the mTOR pathway and thus the control of cell size. The pathology suggested by the human phenotype and neuroimaging studies is supported by analysis of mutant mice and patient fibroblasts.InterpretationWe report a novel disease phenotype, show that the genetic cause is a homozygous mutation in the PTRH2 gene, and demonstrate functional effects in mouse and human tissues. Mutations in PTRH2 should be considered in patients with undiagnosed multisystem neurologic, endocrine, and pancreatic disease.
Project description:Signal transducer and activator of transcription 3 (STAT3) is a member of the STAT protein family implicated in the development of infantile-onset multisystem autoimmune disease. STAT3-related autoimmune disease is characterized by multiorgan autoimmunity, lymphoproliferative disease, and recurrent infections. The presentation is variable, with some patients also developing neonatal diabetes mellitus and interstitial lung disease. Gain-of-function variants in the Src homology 2 domain, leading to autophosphorylation and activation of STAT3, have been previously reported in patients with disease. Here, we report a patient with a novel missense variant, p.Glu616Ala, in STAT3 presenting with infantile-onset multisystem autoimmune disease.
Project description:Recessive mutations in genes encoding mitochondrial DNA replication machinery lead to mitochondrial DNA depletion syndromes. This genetically and phenotypically heterogeneous group includes infantile onset spinocerebellar ataxia (OMIM# 271245) a neurodegenerative disease caused by mutations in the mtDNA helicase gene, c10orf2, with an increased frequency in the Finnish population due to a founder mutation. We describe a child of English descent who presented with a severe phenotype of IOSCA as a result of two-novel mutations in the c10orf2 gene. This paper expands the phenotypic spectrum of IOSCA and adds further evidence for the presence of a genotype-phenotype correlation among patients with recessive mutations in this gene.
Project description:PurposeReceptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important regulator of necroptosis and inflammatory responses. We present the clinical features, genetic analysis and immune work-up of two patients with infantile-onset inflammatory bowel disease (IBD) resulting from RIPK1 mutations.MethodsWhole exome and Sanger sequencing was performed in two IBD patients. Mass cytometry time of flight (CyTOF) was conducted for in-depth immunophenotyping on one of the patient's peripheral blood mononuclear cells, and compared to control subjects and patients with Crohn's disease.ResultsThe patients presented with severe colitis and perianal fistulas in the first months of life, without severe/atypical infections. Genetic studies identified pathogenic genetic variants in RIPK1 (Patient 1, A c.1934C>T missense mutation in Exon 11; Patient 2, c.580G>A missense mutation residing in Exon 4). Protein modeling demonstrated that the mutation in Patient 1 displaces a water molecule, potentially disrupting the local environment, and the mutation in Patient 2 may lead to disruption of the packing and conformation of the kinase domain. Immunofluorescence RIPK1 staining in rectal biopsies demonstrated no expression for Patient 1 and minimal expression for Patient 2, compared to controls and patients with active Crohn's disease. Using CyTOF unbiased clustering analysis, we identified peripheral immune dysregulation in one of these patients, characterized by an increase in IFNγ CD8+ T cells along with a decrease in monocytes, dendritic cells and B cells. Moreover, RIPK1-deficient patient's immune cells exhibited decreased IL-6 production in response to lipopolysaccharide (LPS) across multiple cell types including T cells, B cells and innate immune cells.ConclusionsMutations in RIPK1 should be considered in very young patients presenting with colitis and perianal fistulas. Given RIPK1's role in inflammasome activation, but also in epithelial cells, it is unclear whether IL1 blockade or allogeneic hematopoietic stem cell transplantation can suppress or cure the hyper-inflammatory response in these patients. Additional studies in humans are required to better define the role of RIPK1 in regulating intestinal immune responses, and how treatment can be optimized for patients with RIPK1 deficiency.
Project description:PTRH2 deficiency is associated with an extremely rare disease, infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). We report the first Iranian patient with IMNEPD. We detected a pathogenic variant in the PTRH2 gene (NM_016077.5: c.68T > C, p.V23A). The proband has myopia, spastic diplegic cerebral palsy, urolithiasis, and a history of seizures.
Project description:STING-associated vasculopathy of infantile-onset (SAVI) is one of the newly identified types of interferonopathies. SAVI is caused by heterozygous gain-of-function mutations in the STING1. We herein report for the first time a homozygous variant in the STING1 gene in two siblings that resulted in constitutive activation of STING gene and the SAVI phenotype. Exome sequencing revealed a novel homozygous NM_198282.3: c.841C>T; p.(Arg281Trp) variant in exon 7 of the STING1 gene. The variant segregated in the family to be homozygous in all affected and either heterozygous or wild type in all healthy. Computational structural analysis of the mutants revealed changes in the STING protein structure/function. Elevated serum beta-interferon levels were observed in the patients compared to the control family members. Treatment with Janus kinase inhibitor (JAK-I) Ruxolitinib suppressed the inflammatory process, decreased beta-interferon levels, and stopped the progression of the disease.
Project description:Pompe disease (PD), also known as "glycogen storage disease type II (OMIM # 232300)" is a rare autosomal recessive disorder characterized by progressive glycogen accumulation in cellular lysosomes. It ultimately leads to cellular damage. Infantile-onset Pompe disease (IOPD) is the most severe type of this disease and is characterized by severe hypertrophic cardiomyopathy and generalized hypotonia. Mutations in the acid alpha-glucosidase (GAA) gene, located at locus 17q25.3, are responsible for the disease leading to reduced activity of the acid alpha-glucosidase enzyme. To date, approximately 400 pathogenic mutations have been reported in the GAA gene. The aim of this study is to report a novel nonsense mutation in exon 4 of the GAA gene in an Iranian child suffering from IOPD. The patient was a female neonate with hypertrophic cardiomyopathy and a positive family history of IOPD. After definite diagnosis, enzyme-replacement therapy (ERT) was started for the patient, who was 2 months old. Now at the age of 20 months, she has had good growth and development and her echocardiographic parameters are within the normal range. This report shows that IOPD patients with this mutation can be treated with ERT successfully.
Project description:Primary coenzyme Q10 (CoQ10) deficiency encompasses a subset of mitochondrial diseases caused by mutations affecting proteins involved in the CoQ10 biosynthetic pathway. One of the most frequent clinical syndromes associated with primary CoQ10 deficiency is the severe infantile multisystemic form, which, until recently, was underdiagnosed. In the last few years, the availability of genetic screening through whole exome sequencing and whole genome sequencing has enabled molecular diagnosis in a growing number of patients with this syndrome and has revealed new disease phenotypes and molecular defects in CoQ10 biosynthetic pathway genes. Early genetic screening can rapidly and non-invasively diagnose primary CoQ10 deficiencies. Early diagnosis is particularly important in cases of CoQ10 deficient steroid-resistant nephrotic syndrome, which frequently improves with treatment. In contrast, the infantile multisystemic forms of CoQ10 deficiency, particularly when manifesting with encephalopathy, present therapeutic challenges, due to poor responses to CoQ10 supplementation. Administration of CoQ10 biosynthetic intermediate compounds is a promising alternative to CoQ10; however, further pre-clinical studies are needed to establish their safety and efficacy, as well as to elucidate the mechanism of actions of the intermediates. Here, we review the molecular defects causes of the multisystemic infantile phenotype of primary CoQ10 deficiency, genotype-phenotype correlations, and recent therapeutic advances.