Project description:The tumour suppressor p33(ING1b) ((ING1b) for inhibitor of growth family, member 1b) is important in cellular stress responses, including cell-cycle arrest, apoptosis, chromatin remodelling and DNA repair; however, its degradation pathway is still unknown. Recently, we showed that genotoxic stress induces p33(ING1b) phosphorylation at Ser 126, and abolishment of Ser 126 phosphorylation markedly shortened its half-life. Therefore, we suggest that Ser 126 phosphorylation modulates the interaction of p33(ING1b) with its degradation machinery, stabilizing this protein. Combining the use of inhibitors of the main degradation pathways in the nucleus (proteasome and calpains), partial isolation of the proteasome complex, and in vitro interaction and degradation assays, we set out to determine the degradation mechanism of p33(ING1b). We found that p33(ING1b) is degraded in the 20S proteasome and that NAD(P)H quinone oxidoreductase 1 (NQO1), an oxidoreductase previously shown to modulate the degradation of p53 in the 20S proteasome, inhibits the degradation of p33(ING1b). Furthermore, ultraviolet irradiation induces p33(ING1b) phosphorylation at Ser 126, which, in turn, facilitates its interaction with NQO1.
Project description:Ferroptosis, an emerging nonapoptotic, regulated cell death process distinguished by iron accumulation and subsequent lipid peroxidation, is intricately implicated in the development and progression of multiple cancer types. Here, we aimed to reveal that triggering ferroptosis is a promising treatment strategy for ovarian cancer. In this study, we not only validated that daphnetin caused ferroptosis, but evaluated the effects of daphnetin (and/or cisplatin) in vitro and vivo.Here, we elucidated that daphnetin, a natural product isolated from Daphne Korean Nakai, can exert antitumor effects by inducing the death and suppressing the migration of ovarian cancer cells. Subsequently, transcriptome analysis and ferroptosis inhibitor (Fer-1 and DFO) experiments revealed that there is a close correlation between daphnetin and ferroptosis in ovarian cancer. We further found that daphnetin induced ferroptosis in ovarian cancer cells, as evidenced by the accumulation of intracellular ferrous iron (Fe2+), reactive oxygen species (ROS) and lipid peroxides, as well as the depletion of glutathione (GSH) and ferroptosis indicators (SLC7A11 and GPX4). In particular, daphnetin effectively reduced the mRNA and protein levels of NQO1 (a ubiquitous flavoenzyme), and a high expression level of NQO1 was significantly associated with poor prognosis and ferroptosis resistance in ovarian cancer patients. Furthermore, NQO1 activation markedly attenuated daphnetin-induced cell death, migration and ferroptotic events in vitro and vivo. Interestingly, we also found that treatment with daphnetin, a negative regulator of NQO1, in combination with cisplatin synergistically induced ovarian cancer cell cytotoxicity. This study demonstrated that daphnetin induces ferroptosis by inhibiting NQO1 in ovarian cancer cells. Our findings identified NQO1 as a new daphnetin target and suggested that targeting NQO1 might have therapeutic effects on ovarian cancer.
Project description:NAD[P]H:quinone oxidoreductase 1 (NQO1) regulates cell fate decisions in response to stress. Oxidative stress supports cancer maintenance and progression. Previously we showed that knockdown of NQO1 (NQO1low) prostate cancer cells upregulate pro-inflammatory cytokines and survival under hormone-deprived conditions. Here, we tested the ability of NQO1low cells to form tumors. We found NQO1low cells form aggressive tumors compared with NQO1high cells. Biopsy specimens and circulating tumor cells showed biochemical recurrent prostate cancer was associated with low NQO1. NQO1 silencing was sufficient to induce SMAD-mediated TGFβ signaling and mesenchymal markers. TGFβ treatment decreased NQO1 levels and induced molecular changes similar to NQO1 knockdown cells. Functionally, NQO1 depletion increased migration and sensitivity to oxidative stress. Collectively, this work reveals a possible new gatekeeper role for NQO1 in counteracting cellular plasticity in prostate cancer cells. Further, combining NQO1 with TGFβ signaling molecules may serve as a better signature to predict biochemical recurrence.
Project description:PurposeNAD(P)H:Quinone Oxidoreductase 1 (NQO1) C609T missense variant (NQO1*2) and 29 basepair (bp)-insertion/deletion (I29/D) polymorphism of the NRH:Quinone Oxidoreductase 2 (NQO2) gene promoter have been proposed as predictive and prognostic factors for cancer development and progression. The purpose of this study is to investigate the relationship between NQO1/NQO2 genotype and clinico-pathological features of papillary thyroid microcarcinoma (PTMC).Materials and methodsGenomic DNA was isolated from 243 patients; and clinical data were retrospectively analyzed. NQO1*2 and tri-allelic polymorphism of NQO2 were investigated by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis.ResultsPTMC with NQO1*2 frequently exhibited extra-thyroidal extension as compared to PTMC with wild-type NQO1 (p=0.039). There was a significant relationship between I29/I29 homozygosity of NQO2 and lymph node metastasis (p=0.042). Multivariate analysis showed that the I29/I29 genotype was associated with an increased risk of lymph node metastasis (OR, 2.24; 95% CI, 1.10-4.56; p=0.026).ConclusionNQO1*2 and I29 allele of the NQO2 are associated with aggressive clinical phenotypes of PTMC, and the I29 allele represents a putative prognostic marker for PTMC.
Project description:NAD(P)H:quinone oxidoreductase (NQO) is an antioxidant flavoprotein that catalyzes the reduction of highly reactive quinone metabolites by employing NAD(P)H as an electron donor. There are two NQO enzymes-NQO1 and NQO2-in mammalian systems. In particular, NQO1 exerts many biological activities, including antioxidant activities, anti-inflammatory effects, and interactions with tumor suppressors. Moreover, several recent studies have revealed the promising roles of NQO1 in protecting against cardiovascular damage and related diseases, such as dyslipidemia, atherosclerosis, insulin resistance, and metabolic syndrome. In this review, we discuss recent developments in the molecular regulation and biochemical properties of NQO1, and describe the potential beneficial roles of NQO1 in diseases associated with oxidative stress.
Project description:The NAD(P)H:quinone acceptor oxidoreductase (NQO) gene family belongs to the flavoprotein clan and, in the human genome, consists of two genes (NQO1 and NQO2). These two genes encode cytosolic flavoenzymes that catalyse the beneficial two-electron reduction of quinones to hydroquinones. This reaction prevents the unwanted one-electron reduction of quinones by other quinone reductases; one-electron reduction results in the formation of reactive oxygen species, generated by redox cycling of semiquinones in the presence of molecular oxygen. Both the mammalian NQO1 and NQO2 genes are upregulated as a part of the oxidative stress response and are inexplicably overexpressed in particular types of tumours. A non-synonymous mutation in the NQO1 gene, leading to absence of enzyme activity, has been associated with an increased risk of myeloid leukaemia and other types of blood dyscrasia in workers exposed to benzene. NQO2 has a melatonin-binding site, which may explain the anti-oxidant role of melatonin. An ancient NQO3 subfamily exists in eubacteria and the authors suggest that there should be additional divisions of the NQO family to include the NQO4 subfamily in fungi and NQO5 subfamily in archaebacteria. Interestingly, no NQO genes could be identified in the worm, fly, sea squirt or plants; because these taxa carry quinone reductases capable of one- and two-electron reductions, there has been either convergent evolution or redundancy to account for the appearance of these enzyme functions whenever they have been needed during evolution.
Project description:NAD(P)H:quinone oxidoreductase type I (NQO1) is a target enzyme for triggered delivery of drugs at inflamed tissue and tumor sites, particularly those that challenge traditional therapies. Prodrugs, macromolecules, and molecular assemblies possessing trigger groups that can be cleaved by environmental stimuli are vehicles with the potential to yield active drug only at prescribed sites. Furthermore, quinone propionic acids (QPAs) covalently attached to prodrugs or liposome surfaces can be removed by application of a reductive trigger stimulus, such as that from NQO1; their rates of reductive activation should be tunable via QPA structure. We explored in detail the recombinant human NAD(P)H:quinone oxidoreductase type I (rhNQO1)-catalyzed NADH reduction of a family of substituted QPAs and obtained high precision kinetic parameters. It is found that small changes in QPA structure-in particular, single atom and function group substitutions on the quinone ring at R(1)-lead to significant impacts on the Michaelis constant (K(m)), maximum velocity (V(max)), catalytic constant (k(cat)), and catalytic efficiency (k(cat)/K(m)). Molecular docking simulations demonstrate that alterations in QPA structure result in large changes in QPA alignment and placement with respect to the flavin isoalloxazine ring in the active site of rhNQO1; a qualitative relationship exists between the kinetic parameters and the depth of QPA penetration into the rhNQO1 active site. From a quantitative perspective, a very good correlation is observed between log(k(cat)/K(m)) and the molecular-docking-derived distance between the flavin hydride donor site and quinone hydride acceptor site in the QPAs, an observation that is in agreement with developing theories. The comprehensive kinetic and molecular modeling knowledge obtained for the interaction of recombinant human NQO1 with the quinone propionic acid analogues provides insight into the design and implementation of the QPA trigger groups for drug delivery applications.
Project description:NAD(P)H: quinone oxidoreductase 1 (NQO1) is a ubiquitous flavoenzyme that catalyzes two-electron reduction of various quinones by utilizing NAD(P)H as an electron donor. Our previous study found that progesterone (PG) can protect cardiomyocytes from apoptosis induced by doxorubicin (Dox). Microarray analyses of genes induced by PG had led to the discovery of induction of NQO1 mRNA. We report here that PG induces NQO1 protein and its activity in a dose-dependent manner. Whereas NQO1 is well known as a target gene of Nrf2 transcription factor due to the presence of antioxidant response element (ARE) in the promoter, PG did not activate the ARE, suggesting Nrf2-independent induction of NQO1. To address the role of NQO1 induction in PG-induced cytoprotection, we tested the effect of NQO1 inducer β-naphthoflavone and inhibitor dicoumarol. Induction of NQO1 by β-naphthoflavone decreased Dox-induced apoptosis and potentiated the protective effect of PG as measured by caspase-3 activity. PG-induced NQO1 activity was inhibited with dicoumarol, which did not affect PG-induced cytoprotection. Dicoumarol treatment alone potentiated Dox-induced caspase-3 activity. These data suggest that while NQO1 plays a role in PG-induced cytoprotection, there are additional components contributing to PG-induced cytoprotection.
Project description:The Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements pathway enables cells to survive oxidative stress conditions through regulating the expression of cytoprotective enzymes such asNad(p)hquinone oxidoreductase 1 (NQO1). This work presents the design and synthesis of novel anilinoquinazoline derivatives (2-16a) and evaluation of their NQO1 inducer activity in murine cells. Molecular docking of the new compounds was performed to assess their ability to inhibit Keap1-Nrf2 protein-protein interaction through occupying the Keap1-Nrf2-binding domain, which leads to Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed that all compounds can potentially interact with Keap1; however, 1,5-dimethyl-2-phenyl-4-(2-phenylquinazolin-4-ylamino)-1,2-dihydropyrazol-3-one (9), the most potent inducer, showed the largest number of interactions with key amino acids in the binding pocket (Arg483, Tyr525, and Phe478) compared to the native ligand or any other compound in this series.
Project description:Cancer cell sensitivity to drugs may be associated with disturbed antioxidant enzymes expression. We investigated mechanisms of resistance by using oxidative stress-resistant MCF-7 breast cancer cells (Resox cells). Since nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase-1 (NQO1) is modified in tumors and oxidative stress-resistant cells, we studied its role in cells exposed to β-lapachone, menadione, and doxorubicin. Normal mammary epithelial 250MK, MCF-7, and Resox cells were employed. NQO1 expression and enzyme activity were determined by quantitative polymerase chain reaction (RT-PCR), immunoblotting, and biochemical assays. Dicoumarol and gene silencing (siRNA) were used to modulate NQO1 expression and to assess its potential drug-detoxifying role. MTT (3-(4,5-dimethylthia-zolyl-2)-2,5-diphenyltetrazolium bromide) or clonogenic assays were used to investigate cytotoxicity. NQO1 variants, NQO1*1 (wt), and NQO1*2 (C609T), were obtained by transfecting NQO1-null MDA-MB-231 cell line. Resox cells have higher NQO1 expression than MCF-7 cells. In 250MK cells its expression was low but enzyme activity was higher suggesting a variant NQO1 form in MCF-7 cells. MCF-7 and Resox cells are heterozygous NQO1*1 (wt)/ NQO1*2 (C609T). Both NQO1 polymorphism and NQO1 overexpression are main determinants for cell resistance during oxidative stress. NQO1 overexpression increases cell sensitivity to β-lapachone whereas NQO1*2 polymorphism triggers quinone-based chemotherapies-sensitivity. NQO1 influences cancer cells redox metabolism and their sensitivity to drugs. We suggest that determining NQO1 polymorphism may be important when considering the use of quinone-based chemotherapeutic drugs.