Unknown

Dataset Information

0

Selective formation of acetate intermediate prolongs robust ethylene removal at 0 °C for 15 days.


ABSTRACT: Efficient ethylene (C2H4) removal below room temperatures, especially near 0  °C, is of great importance to suppress that the vegetables and fruits spoil during cold-chain transportation and storage. However, no catalysts have been developed to fulfill the longer-than-2-h C2H4 removal at this low temperature effectively. Here we prepare gold-platinum (Au-Pt) nanoalloy catalysts that show robust C2H4 (of 50 ppm) removal capacity at 0 °C for 15 days (360 h). We find, by virtue of operando Fourier transformed infrared spectroscopy and online temperature-programmed desorption equipped mass spectrometry, that the Au-Pt nanoalloys favor the formation of acetate from selective C2H4 oxidation. And this on-site-formed acetate intermediate would partially cover the catalyst surface at 0 °C, thus exposing active sites to prolong the continuous and effective C2H4 removal. We also demonstrate, by heat treatment, that the performance of the used catalysts will be fully recovered for at least two times.

SUBMITTER: Lin M 

PROVIDER: S-EPMC10199933 | biostudies-literature | 2023 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selective formation of acetate intermediate prolongs robust ethylene removal at 0 °C for 15 days.

Lin Mingyue M   Wang Haifeng H   Takei Takashi T   Miura Hiroki H   Shishido Tetsuya T   Li Yuhang Y   Hu Jinneng J   Inomata Yusuke Y   Ishida Tamao T   Haruta Masatake M   Xiu Guangli G   Murayama Toru T  

Nature communications 20230520 1


Efficient ethylene (C<sub>2</sub>H<sub>4</sub>) removal below room temperatures, especially near 0  °C, is of great importance to suppress that the vegetables and fruits spoil during cold-chain transportation and storage. However, no catalysts have been developed to fulfill the longer-than-2-h C<sub>2</sub>H<sub>4</sub> removal at this low temperature effectively. Here we prepare gold-platinum (Au-Pt) nanoalloy catalysts that show robust C<sub>2</sub>H<sub>4</sub> (of 50 ppm) removal capacity at  ...[more]

Similar Datasets

| S-EPMC6915367 | biostudies-literature
| S-EPMC8991814 | biostudies-literature
| S-EPMC3955058 | biostudies-literature
| S-EPMC6308792 | biostudies-literature
| S-EPMC5708548 | biostudies-literature
| S-EPMC3998282 | biostudies-literature
| S-EPMC10575095 | biostudies-literature
| S-EPMC11379946 | biostudies-literature
| S-EPMC9017796 | biostudies-literature
| S-EPMC8821618 | biostudies-literature