Unknown

Dataset Information

0

ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins.


ABSTRACT: Immune receptor proteins play a key role in the immune system and have shown great promise as biotherapeutics. The structure of these proteins is critical for understanding their antigen binding properties. Here, we present ImmuneBuilder, a set of deep learning models trained to accurately predict the structure of antibodies (ABodyBuilder2), nanobodies (NanoBodyBuilder2) and T-Cell receptors (TCRBuilder2). We show that ImmuneBuilder generates structures with state of the art accuracy while being far faster than AlphaFold2. For example, on a benchmark of 34 recently solved antibodies, ABodyBuilder2 predicts CDR-H3 loops with an RMSD of 2.81Å, a 0.09Å improvement over AlphaFold-Multimer, while being over a hundred times faster. Similar results are also achieved for nanobodies, (NanoBodyBuilder2 predicts CDR-H3 loops with an average RMSD of 2.89Å, a 0.55Å improvement over AlphaFold2) and TCRs. By predicting an ensemble of structures, ImmuneBuilder also gives an error estimate for every residue in its final prediction. ImmuneBuilder is made freely available, both to download ( https://github.com/oxpig/ImmuneBuilder ) and to use via our webserver ( http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred ). We also make available structural models for ~150 thousand non-redundant paired antibody sequences ( https://doi.org/10.5281/zenodo.7258553 ).

SUBMITTER: Abanades B 

PROVIDER: S-EPMC10227038 | biostudies-literature | 2023 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins.

Abanades Brennan B   Wong Wing Ki WK   Boyles Fergus F   Georges Guy G   Bujotzek Alexander A   Deane Charlotte M CM  

Communications biology 20230529 1


Immune receptor proteins play a key role in the immune system and have shown great promise as biotherapeutics. The structure of these proteins is critical for understanding their antigen binding properties. Here, we present ImmuneBuilder, a set of deep learning models trained to accurately predict the structure of antibodies (ABodyBuilder2), nanobodies (NanoBodyBuilder2) and T-Cell receptors (TCRBuilder2). We show that ImmuneBuilder generates structures with state of the art accuracy while being  ...[more]

Similar Datasets

| S-EPMC8650144 | biostudies-literature
| S-EPMC8357494 | biostudies-literature
| S-EPMC9771809 | biostudies-literature
| S-EPMC11337900 | biostudies-literature
| S-EPMC9565823 | biostudies-literature
| S-EPMC8528079 | biostudies-literature
| S-EPMC10834666 | biostudies-literature
2023-07-10 | GSE221870 | GEO
| S-EPMC6189057 | biostudies-literature
| S-EPMC11465252 | biostudies-literature