Ontology highlight
ABSTRACT: Aim
To improve identification of peritoneal and distant metastases in locally advanced gastric cancer using [18F]FDG-PET radiomics.Methods
[18F]FDG-PET scans of 206 patients acquired in 16 different Dutch hospitals in the prospective multicentre PLASTIC-study were analysed. Tumours were delineated and 105 radiomic features were extracted. Three classification models were developed to identify peritoneal and distant metastases (incidence: 21%): a model with clinical variables, a model with radiomic features, and a clinicoradiomic model, combining clinical variables and radiomic features. A least absolute shrinkage and selection operator (LASSO) regression classifier was trained and evaluated in a 100-times repeated random split, stratified for the presence of peritoneal and distant metastases. To exclude features with high mutual correlations, redundancy filtering of the Pearson correlation matrix was performed (r = 0.9). Model performances were expressed by the area under the receiver operating characteristic curve (AUC). In addition, subgroup analyses based on Lauren classification were performed.Results
None of the models could identify metastases with low AUCs of 0.59, 0.51, and 0.56, for the clinical, radiomic, and clinicoradiomic model, respectively. Subgroup analysis of intestinal and mixed-type tumours resulted in low AUCs of 0.67 and 0.60 for the clinical and radiomic models, and a moderate AUC of 0.71 in the clinicoradiomic model. Subgroup analysis of diffuse-type tumours did not improve the classification performance.Conclusion
Overall, [18F]FDG-PET-based radiomics did not contribute to the preoperative identification of peritoneal and distant metastases in patients with locally advanced gastric carcinoma. In intestinal and mixed-type tumours, the classification performance of the clinical model slightly improved with the addition of radiomic features, but this slight improvement does not outweigh the laborious radiomic analysis.
SUBMITTER: Pullen LCE
PROVIDER: S-EPMC10251816 | biostudies-literature | 2023 May
REPOSITORIES: biostudies-literature
Pullen Lieke C E LCE Noortman Wyanne A WA Triemstra Lianne L de Jongh Cas C Rademaker Fenna J FJ Spijkerman Romy R Kalisvaart Gijsbert M GM Gertsen Emma C EC de Geus-Oei Lioe-Fee LF Tolboom Nelleke N de Steur Wobbe O WO Dantuma Maura M Slart Riemer H J A RHJA van Hillegersberg Richard R Siersema Peter D PD Ruurda Jelle P JP van Velden Floris H P FHP Vegt Erik E On Behalf Of The Plastic Study Group
Cancers 20230523 11
<h4>Aim</h4>To improve identification of peritoneal and distant metastases in locally advanced gastric cancer using [<sup>18</sup>F]FDG-PET radiomics.<h4>Methods</h4>[<sup>18</sup>F]FDG-PET scans of 206 patients acquired in 16 different Dutch hospitals in the prospective multicentre PLASTIC-study were analysed. Tumours were delineated and 105 radiomic features were extracted. Three classification models were developed to identify peritoneal and distant metastases (incidence: 21%): a model with c ...[more]