Unknown

Dataset Information

0

Three-Dimensional Flower-like MoS2 Nanosheets Grown on Graphite as High-Performance Anode Materials for Fast-Charging Lithium-Ion Batteries.


ABSTRACT: The demand for fast-charging lithium-ion batteries (LIBs) with long cycle life is growing rapidly due to the increasing use of electric vehicles (EVs) and energy storage systems (ESSs). Meeting this demand requires the development of advanced anode materials with improved rate capabilities and cycling stability. Graphite is a widely used anode material for LIBs due to its stable cycling performance and high reversibility. However, the sluggish kinetics and lithium plating on the graphite anode during high-rate charging conditions hinder the development of fast-charging LIBs. In this work, we report on a facile hydrothermal method to achieve three-dimensional (3D) flower-like MoS2 nanosheets grown on the surface of graphite as anode materials with high capacity and high power for LIBs. The composite of artificial graphite decorated with varying amounts of MoS2 nanosheets, denoted as MoS2@AG composites, deliver excellent rate performance and cycling stability. The 20-MoS2@AG composite exhibits high reversible cycle stability (~463 mAh g-1 at 200 mA g-1 after 100 cycles), excellent rate capability, and a stable cycle life at the high current density of 1200 mA g-1 over 300 cycles. We demonstrate that the MoS2-nanosheets-decorated graphite composites synthesized via a simple method have significant potential for the development of fast-charging LIBs with improved rate capabilities and interfacial kinetics.

SUBMITTER: Lee YA 

PROVIDER: S-EPMC10254478 | biostudies-literature | 2023 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Three-Dimensional Flower-like MoS<sub>2</sub> Nanosheets Grown on Graphite as High-Performance Anode Materials for Fast-Charging Lithium-Ion Batteries.

Lee Yeong A YA   Jang Kyu Yeon KY   Yoo Jaeseop J   Yim Kanghoon K   Jung Wonzee W   Jung Kyu-Nam KN   Yoo Chung-Yul CY   Cho Younghyun Y   Lee Jinhong J   Ryu Myung Hyun MH   Shin Hyeyoung H   Lee Kyubock K   Yoon Hana H  

Materials (Basel, Switzerland) 20230527 11


The demand for fast-charging lithium-ion batteries (LIBs) with long cycle life is growing rapidly due to the increasing use of electric vehicles (EVs) and energy storage systems (ESSs). Meeting this demand requires the development of advanced anode materials with improved rate capabilities and cycling stability. Graphite is a widely used anode material for LIBs due to its stable cycling performance and high reversibility. However, the sluggish kinetics and lithium plating on the graphite anode d  ...[more]

Similar Datasets

| S-EPMC10516836 | biostudies-literature
| S-EPMC5316998 | biostudies-literature
| S-EPMC10574418 | biostudies-literature
| S-EPMC7610341 | biostudies-literature
| S-EPMC9230857 | biostudies-literature
| S-EPMC9229638 | biostudies-literature
| S-EPMC9416967 | biostudies-literature
| S-EPMC9865035 | biostudies-literature
| S-EPMC11658506 | biostudies-literature
| S-EPMC9693981 | biostudies-literature