Project description:The Frontiers Media family has over 200 journals, which are each headed by usually one Field Chief Editor, and several thousand specialty sections, which are each headed by one or more Specialty Chief Editors. The year 2021 was the 10th anniversary of the founding of the Frontiers in Genetics journal and the Frontiers in Toxicogenomics specialty section of this journal. In 2021, we also announce one of the newest of the Frontiers journals-Frontiers in Toxicology which is part of the Frontiers Media family of journals but independent of Frontiers in Genetics. Dr. Ruden is the founding, and currently sole, Specialty Chief Editor of Frontiers in Toxicogenomics and one of 9 Specialty Chief Editors of Frontiers in Toxicology. As of 2021, Frontiers in Toxicogenomics has published over 138 articles and has over 370 Editors including 90 Associate Editors and 280 Review Editors. The Frontiers in Genetics impact factor was initially approximately 2.5 when it was first listed in PubMed in 2015 and has risen steadily to its current value of 4.8, which is typical for the majority of the over 200 Frontiers journals that have established impact factors. In this overview of the first decade of Frontiers in Toxicogenomics, we discuss the top 5 articles with the highest Scopus citations, which were all written in the first few years of the journal. The article with the highest number of citations, with 353 Scopus over 600 Google Scholar citations, and the highest average number of citations (67) that steadily increased from 10 citations in 2013 to 119 citations in 2021, was written in 2012 by Dr. Ruden's laboratory and titled, "Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift." The five most influential authors who published in the journal in the past 10 years based on Scopus citations of a particular paper are Dr. Ruden's laboratory, with 353 Scopus citations for the SnpSift paper mentioned above; Drs. Brock Christensen and Carmen J. Marsit, with 86 Scopus citations for their review, "Epigenomics in environmental health"; Dr. Michael Aschner and colleagues, with 61 Scopus citations for their paper "Genetic factors and manganese-induced neurotoxicity"; and Dr. Sandra C. dos Santos and colleagues, with 59 Scopus citations for their paper, "Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology." While the top 5 papers were published in the early years of the journal, we will also discuss a more recent article published in 2018 on a comparison of RNA-seq and microarray methods by Dr. Michael Liguori's laboratory, "Comparison of RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver From Short-Term Rat Toxicity Studies," that far exceeds the number of downloads and views of all the other articles published in the first 10 years of the journal and will likely be a top cited paper in the second decade highlights of this journal. Finally, we discuss where the Frontiers in Toxicogenomics specialty journal and the Frontiers in Toxicology journal will go to advance the field of toxicogenomics, and more generally, toxicology, in the future.
Project description:Sirtuins are NAD+-dependent protein lysine deacylase and mono-ADP ribosylases present in both prokaryotes and eukaryotes. The sirtuin family comprises seven isoforms in mammals, each possessing different subcellular localization and biological functions. Sirtuins have received increasing attention in the past two decades given their pivotal functions in a variety of biological contexts, including cytodifferentiation, transcriptional regulation, cell cycle progression, apoptosis, inflammation, metabolism, neurological and cardiovascular physiology and cancer. Consequently, modulation of sirtuin activity has been regarded as a promising therapeutic option for many pathologies. In this review, we provide an up-to-date overview of sirtuin biology and pharmacology. We examine the main features of the most relevant inhibitors and activators, analyzing their structure-activity relationships, applications in biology, and therapeutic potential.
Project description:The study of epigenetics has explained some of the 'missing heritability' of age-related macular degeneration (AMD). The epigenome also provides a substantial contribution to the organisation of the functional retina. There is emerging evidence of specific epigenetic mechanisms associated with AMD. This 'AMD epigenome' may offer the chance to develop novel AMD treatments.
Project description:Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression. But, expanding these considerations to non-peptide neurotransmitters illustrates how gene regulatory events impact neurochemistry in a much broader sense, extending beyond the neurochemicals that translate electrical signals into chemical ones in the synapse, to also include every aspect of neural development, structure, function, and pathology. From the beginning, the mutability - yet relative stability - of genes and their expression patterns were recognized as potential substrates for some of the most intriguing phenomena in neurobiology - those instances of plasticity required for learning and memory. Near-heretical speculation was offered in the idea that perhaps the very sequence of the genome was altered to encode memories. A fascinating component of the intervening progress includes evidence that the central dogma is not nearly as rigid and consistent as we once thought. And this mutability extends to the potential to manipulate that code for both experimental and clinical purposes. Astonishing progress has been made in the molecular biology of neurochemistry during the 60 years since this journal debuted. Many of the gains in conceptual understanding have been driven by methodological progress, from automated high-throughput sequencing instruments to recombinant-DNA vectors that can convey color-coded genetic modifications in the chromosomes of live adult animals. This review covers the highlights of these advances, both theoretical and technological, along with a brief window into the promising science ahead. This article is part of the 60th Anniversary special issue.
Project description:Diabetes has reached epidemic proportions worldwide. Currently, approximately 537 million adults (20-79 years) have diabetes, and the total number of people with diabetes is continuously increasing. Diabetes includes several subtypes. About 80% of all cases of diabetes are type 2 diabetes (T2D). T2D is a polygenic disease with an inheritance ranging from 30 to 70%. Genetic and environment/lifestyle factors, especially obesity and sedentary lifestyle, increase the risk of T2D. In this review, we discuss how studies on the genetics of diabetes started, how they expanded when genome-wide association studies and exome and whole-genome sequencing became available, and the current challenges in genetic studies of diabetes. T2D is heterogeneous with respect to clinical presentation, disease course, and response to treatment, and has several subgroups which differ in pathophysiology and risk of micro- and macrovascular complications. Currently, genetic studies of T2D focus on these subgroups to find the best diagnoses and treatments for these patients according to the principles of precision medicine.
Project description:PurposeActive research in arthroscopy in all its domains has been transcending into evidence-backed clinical practice over years. A look-back at the research developments in arthroscopy using scientometry for the past thirty years will help the researchers identify what has been investigated so far, and what needs to be done in the future.MethodsWe used the Web of Science-core collection database as the source for data retrieval. We used CiteSpace (5.7.R1) for scientometric and visualization analysis Visualization of the structure, regularity, and distribution of research domains in the arthroscopy was done with the analysis of the article co-citation data to mine the knowledge clustering and citation space distribution. We also analyzed the co-occurrence between the additional research units such as cooperation among authors, institutions, and countries in the field of arthroscopy.ResultsWe recovered 383 RCTs and 11,853 non-RCT articles in the field of arthroscopy from the global literature of 15,766 arthroscopy-related publications from 1990 to 2019. Research co-operation group with the top contribution to the arthroscopic literature was from BG Domb, MJ Philippon, and SJ Nho for non-RCT articles and Casati A, Pluta A, and Lund B for RCTs. Weaker collaboration exists among the institutions globally, but the network of domestic institutions seemed stronger in co-institution analysis. USA and England have been the pioneers in research particularly the RCTs. The current hotspots were around the outcome analysis, particularly in the knee and shoulder pathologies. In the hip the main area of focus was the Femoro-Acetabular Impingement (FAI). The other areas of arthroscopy remain relatively less explored.ConclusionsResearch in arthroscopy is rapidly progressing. Poor international collaboration, the concentration of research only in certain areas of arthroscopy, and conduction of most RCTs only by certain institutes seem to be gross problems in arthroscopic research. Setting up of an International authoritative body for arthroscopic research is the way forward for arthroscopy.Supplementary informationThe online version contains supplementary material available at 10.1007/s43465-021-00586-0.
Project description:Seneca Valley Virus isolate 001 (SVV-001) is an oncolytic RNA virus of the Picornaviridae family. It is also the first picornavirus discovered of the novel genus Senecavirus. SVV-001 replicates through an RNA intermediate, bypassing a DNA phase, and is unable to integrate into the host genome. SVV-001 was originally discovered as a contaminant in the cell culture of fetal retinoblasts and has since been identified as a potent oncolytic virus against tumors of neuroendocrine origin. SVV-001 has a number of features that make it an attractive oncolytic virus, namely, its ability to target and penetrate solid tumors via intravenous administration, inability for insertional mutagenesis, and being a self-replicating RNA virus with selective tropism for cancer cells. SVV-001 has been studied in both pediatric and adult early phase studies reporting safety and some clinical efficacy, albeit primarily in adult tumors. This review summarizes the current knowledge of SVV-001 and what its future as an oncolytic virus may hold.
Project description:Ion channels play key roles in almost all facets of cellular physiology and have emerged as key host cell factors for a multitude of viral infections. A catalogue of ion channel-blocking drugs have been shown to possess antiviral activity, some of which are in widespread human usage for ion channel-related diseases, highlighting new potential for drug repurposing. The emergence of ion channel-virus interactions has also revealed the intriguing possibility that channelopathies may explain some commonly observed virus induced pathologies. This field is rapidly evolving and an up-to-date summary of new discoveries can inform future perspectives. We herein discuss the role of ion channels during viral lifecycles, describe the recently identified ion channel drugs that can inhibit viral infections, and highlight the potential contribution of ion channels to virus-mediated disease.
Project description:Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and is most commonly found in the setting of liver cirrhosis. Treatment of HCC must consider both the tumors present, as well as the remaining dysfunctional liver that both hinders treatment and can produce additional HCC over time. Ablation is an evolving part of the multimodality treatment approach to HCC that can effectively destroy tumors while preserving surrounding liver parenchyma. New technologies have made ablation an indispensable tool in the treatment of all stages of HCC. This review presents the history, present technologies and future potential of ablation in the treatment of HCC.
Project description:Ischemic stroke is a heterogeneous condition influenced by a combination of genetic and environmental factors. Recent advancements have explored genetics in relation to various aspects of ischemic stroke, including the alteration of individual stroke occurrence risk, modulation of treatment response, and effectiveness of post-stroke functional recovery. This article aims to review the recent findings from genetic studies related to various clinical and molecular aspects of ischemic stroke. The potential clinical applications of these genetic insights in stratifying stroke risk, guiding personalized therapy, and identifying new therapeutic targets are discussed herein.