Unknown

Dataset Information

0

Enhancing untargeted metabolomics using metadata-based source annotation.


ABSTRACT: Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.

SUBMITTER: Gauglitz JM 

PROVIDER: S-EPMC10277029 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhancing untargeted metabolomics using metadata-based source annotation.

Gauglitz Julia M JM   West Kiana A KA   Bittremieux Wout W   Williams Candace L CL   Weldon Kelly C KC   Panitchpakdi Morgan M   Di Ottavio Francesca F   Aceves Christine M CM   Brown Elizabeth E   Sikora Nicole C NC   Jarmusch Alan K AK   Martino Cameron C   Tripathi Anupriya A   Meehan Michael J MJ   Dorrestein Kathleen K   Shaffer Justin P JP   Coras Roxana R   Vargas Fernando F   Goldasich Lindsay DeRight LD   Schwartz Tara T   Bryant MacKenzie M   Humphrey Gregory G   Johnson Abigail J AJ   Spengler Katharina K   Belda-Ferre Pedro P   Diaz Edgar E   McDonald Daniel D   Zhu Qiyun Q   Elijah Emmanuel O EO   Wang Mingxun M   Marotz Clarisse C   Sprecher Kate E KE   Vargas-Robles Daniela D   Withrow Dana D   Ackermann Gail G   Herrera Lourdes L   Bradford Barry J BJ   Marques Lucas Maciel Mauriz LMM   Amaral Juliano Geraldo JG   Silva Rodrigo Moreira RM   Veras Flavio Protasio FP   Cunha Thiago Mattar TM   Oliveira Rene Donizeti Ribeiro RDR   Louzada-Junior Paulo P   Mills Robert H RH   Piotrowski Paulina K PK   Servetas Stephanie L SL   Da Silva Sandra M SM   Jones Christina M CM   Lin Nancy J NJ   Lippa Katrice A KA   Jackson Scott A SA   Daouk Rima Kaddurah RK   Galasko Douglas D   Dulai Parambir S PS   Kalashnikova Tatyana I TI   Wittenberg Curt C   Terkeltaub Robert R   Doty Megan M MM   Kim Jae H JH   Rhee Kyung E KE   Beauchamp-Walters Julia J   Wright Kenneth P KP   Dominguez-Bello Maria Gloria MG   Manary Mark M   Oliveira Michelli F MF   Boland Brigid S BS   Lopes Norberto Peporine NP   Guma Monica M   Swafford Austin D AD   Dutton Rachel J RJ   Knight Rob R   Dorrestein Pieter C PC  

Nature biotechnology 20220707 12


Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data. ...[more]

Similar Datasets

| S-EPMC6637741 | biostudies-literature
| S-EPMC6447530 | biostudies-literature
| S-EPMC5017021 | biostudies-other
| S-EPMC7281100 | biostudies-literature
| S-EPMC8733904 | biostudies-literature
| S-EPMC11426395 | biostudies-literature
| S-EPMC7828469 | biostudies-literature
| S-EPMC6501219 | biostudies-literature
| S-EPMC8715951 | biostudies-literature
| S-EPMC9934657 | biostudies-literature