Unknown

Dataset Information

0

Seasonal specialization drives divergent population dynamics in two closely related butterflies.


ABSTRACT: Seasons impose different selection pressures on organisms through contrasting environmental conditions. How such seasonal evolutionary conflict is resolved in organisms whose lives span across seasons remains underexplored. Through field experiments, laboratory work, and citizen science data analyses, we investigate this question using two closely related butterflies (Pieris rapae and P. napi). Superficially, the two butterflies appear highly ecologically similar. Yet, the citizen science data reveal that their fitness is partitioned differently across seasons. Pieris rapae have higher population growth during the summer season but lower overwintering success than do P. napi. We show that these differences correspond to the physiology and behavior of the butterflies. Pieris rapae outperform P. napi at high temperatures in several growth season traits, reflected in microclimate choice by ovipositing wild females. Instead, P. rapae have higher winter mortality than do P. napi. We conclude that the difference in population dynamics between the two butterflies is driven by seasonal specialization, manifested as strategies that maximize gains during growth seasons and minimize harm during adverse seasons, respectively.

SUBMITTER: von Schmalensee L 

PROVIDER: S-EPMC10281946 | biostudies-literature | 2023 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Seasonal specialization drives divergent population dynamics in two closely related butterflies.

von Schmalensee Loke L   Caillault Pauline P   Gunnarsdóttir Katrín Hulda KH   Gotthard Karl K   Lehmann Philipp P  

Nature communications 20230620 1


Seasons impose different selection pressures on organisms through contrasting environmental conditions. How such seasonal evolutionary conflict is resolved in organisms whose lives span across seasons remains underexplored. Through field experiments, laboratory work, and citizen science data analyses, we investigate this question using two closely related butterflies (Pieris rapae and P. napi). Superficially, the two butterflies appear highly ecologically similar. Yet, the citizen science data r  ...[more]

Similar Datasets

| S-EPMC7862691 | biostudies-literature
| S-EPMC3792132 | biostudies-literature
| S-EPMC5841384 | biostudies-literature
| S-EPMC7132107 | biostudies-literature
| S-EPMC7319237 | biostudies-literature
| S-EPMC8692485 | biostudies-literature
| S-EPMC7423431 | biostudies-literature
| S-EPMC11253715 | biostudies-literature
| S-EPMC2206082 | biostudies-literature
| S-EPMC4153614 | biostudies-literature