Project description:ObjectiveWe aimed to evaluate the safety and effectiveness of short-term remote ischemic postconditioning (RIPC) in acute stroke monkey models.MethodsAcute stroke monkeys were allocated to four groups based on the number of limbs exposed to RIPC. RIPC was initiated by 5-min cuff inflation/deflation cycles of the target limb(s) for 5-10 bouts. Vital signs, skin integrity, brain MRI, and serum levels of cardiac enzymes (myoglobin, creatine kinase [CK], CK-muscle/brain [CK-MB]), one inflammatory marker (high-sensitivity C-reactive protein [hsCRP], and one endothelial injury marker (von Willebrand factor [vWF]) were assessed. Spetzler scores were used to assess neurological function.ResultsNo significant differences in vital signs or local skin integrity were found. Short-term RIPC did not reduce infarct volume under any condition at the 24th hour after stroke. However, neurological function improved in multi-limb RIPC compared with sham and single-limb RIPC at the 30th day follow-up after stroke. Myoglobin, CK, and CK-MB levels were reduced after multi-limb RIPC, regardless of the number of bouts. Moreover, multi-limb RIPC produced a greater diminution in CK-MB levels, whereas two-limb RIPC was more effective in reducing serum CK levels at the 24th hour after stroke. hsCRP increased after 5 bouts of multi-limb RIPC before decreasing below baseline and single-limb RIPC levels. Serum vWF was decreased at later time points after RIPC in all RIPC groups.ConclusionsStroke monkeys in hyperacute stage may benefit from short-term RIPC; however, whether this intervention can be translated into clinical use in patients with acute ischemic stroke warrants further study.
Project description:In remote ischemic conditioning (RIC), brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue, or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical, or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1?, microribonucleic acid-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting, and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible, and inexpensive.
Project description:The animals were subjected to focal cerebral ischemia using the filament model without or with post-ischemic remote conditioning. The neurological deficits in animals were assessed and brain infarct volumes were determined. Comparative proteomics was done. Selected candidate proteins were validated by western blotting and immunohistochemistry. Additionally neurodegeneration was assesed.
Project description:BackgroundAnthracycline cardiotoxicity is a concern in survivors of childhood cancers. Recent evidence suggests that remote ischemic conditioning (RIC) may offer myocardial protection.ObjectivesThis randomized sham-controlled single-blind study tested the hypothesis that RIC may reduce myocardial injury in pediatric cancer patients receiving anthracycline chemotherapy.MethodsWe performed a phase 2 sham-controlled single-blind randomized controlled trial to determine the impact of RIC on myocardial injury in pediatric cancer patients receiving anthracycline-based chemotherapy. Patients were randomized to receive RIC (3 cycles of 5-minute inflation of a blood pressure cuff placed over 1 limb to 15 mm Hg above systolic pressure) or sham intervention. The intervention was applied within 60 minutes before initiation of the first dose and before up to 4 cycles of anthracycline therapy. The primary outcome was the plasma high-sensitivity cardiac troponin T (hs-cTnT) level. The secondary outcome measures included echocardiographic indexes of left ventricular systolic and diastolic function and the occurrence of cardiovascular events.ResultsA total of 68 children 10.9 ± 3.9 years of age were randomized to receive RIC (n = 34) or sham (n = 34) intervention. Plasma levels of hs-cTnT showed a progressive increase across time points in the RIC (P < 0.001) and sham (P < 0.001) groups. At each of the time points, there were no significant differences in hs-cTnT levels or LV tissue Doppler and strain parameters between the 2 groups (all P > 0.05). None of the patients developed heart failure or cardiac arrhythmias.ConclusionsRIC did not exhibit cardioprotective effects in childhood cancer patients receiving anthracycline-based chemotherapy. (Remote Ischaemic Preconditioning in Childhood Cancer [RIPC]; NCT03166813).
Project description:Ischemic conditioning induces an endogenous protective mechanism that allows organisms to develop resistance to subsequent insults. The conditioning effect occurs across organs and species. Recently, much attention has been given to remote ischemic limb conditioning due to its non-invasive nature and potential therapeutic applications. While tolerance is induced at the primary injury site (e.g. the heart in cardiac ischemia and the brain in stroke), the site of conditioning application is away from the target organ, suggesting the protective factors are extrinsic in nature rather than intrinsic. This review will focus on the peripheral factors that account for the induction of tolerance. Topics of particular interest are blood flow changes, peripheral neural pathways, humoral factors in circulation, and the peripheral immune system. This review will also discuss how conditioning may negatively affect metabolically compromised conditions, its optimal dose, and window for therapy development.
Project description:Remote ischemic conditioning (RIC) is a noninvasive procedure whereby several periods of ischemia are induced in a limb. Although there is growing interest in using RIC to improve stroke recovery, preclinical RIC research has focused exclusively on neuroprotection, using male animals and the intraluminal suture stroke model, and delivered RIC at times not relevant to either brain repair or behavioral recovery. In alignment with the Stroke Recovery and Rehabilitation Roundtable, we address these shortcomings. First, a standardized session (5-minute inflation/deflation, 4 repetitions) of RIC was delivered using a cuff on the contralesional hindlimb in both male and female Sprague-Dawley rats. Using the endothelin-1 stroke model, RIC was delivered once either prestroke (18 hours before, pre-RIC) or poststroke (4 hours after, post-RIC), and infarct volume was assessed at 24 hours poststroke using magnetic resonance imaging. RIC was delivered at these times to mimic the day before a surgery where clots are possible or as a treatment similar to tissue plasminogen activator, respectively. Pre-RIC reduced infarct volume by 41% compared with 29% with post-RIC. RIC was neuroprotective in both sexes, but males had a 46% reduction of infarct volume compared with 23% in females. After confirming the acute efficacy of RIC, we applied it chronically for 4 weeks, beginning 5 days poststroke. This delayed RIC failed to enhance poststroke behavioral recovery. Based on these findings, the most promising application of RIC is during the hyperacute and early acute phases of stroke, a time when other interventions such as exercise may be contraindicated.
Project description:AimsAnthracycline-induced cardiotoxicity (AIC) is a serious adverse effect among cancer patients. A central mechanism of AIC is irreversible mitochondrial damage. Despite major efforts, there are currently no effective therapies able to prevent AIC.Methods and resultsForty Large-White pigs were included. In Study 1, 20 pigs were randomized 1:1 to remote ischaemic preconditioning (RIPC, 3 cycles of 5 min leg ischaemia followed by 5 min reperfusion) or no pretreatment. RIPC was performed immediately before each intracoronary doxorubicin injections (0.45 mg/kg) given at Weeks 0, 2, 4, 6, and 8. A group of 10 pigs with no exposure to doxorubicin served as healthy controls. Pigs underwent serial cardiac magnetic resonance (CMR) exams at baseline and at Weeks 6, 8, 12, and 16, being sacrifice after that. In Study 2, 10 new pigs received 3 doxorubicin injections (with/out preceding RIPC) and were sacrificed at week 6. In Study 1, left ventricular ejection fraction (LVEF) depression was blunted animals receiving RIPC before doxorubicin (RIPC-Doxo), which had a significantly higher LVEF at Week 16 than doxorubicin treated pigs that received no pretreatment (Untreated-Doxo) (41.5 ± 9.1% vs. 32.5 ± 8.7%, P = 0.04). It was mainly due to conserved regional contractile function. In Study 2, transmission electron microscopy (TEM) at Week 6 showed fragmented mitochondria with severe morphological abnormalities in Untreated-Doxo pigs, together with upregulation of fission and autophagy proteins. At the end of the 16-week Study 1 protocol, TEM revealed overt mitochondrial fragmentation with structural fragmentation in Untreated-Doxo pigs, whereas interstitial fibrosis was less severe in RIPC+Doxo pigs.ConclusionIn a translatable large-animal model of AIC, RIPC applied immediately before each doxorubicin injection resulted in preserved cardiac contractility with significantly higher long-term LVEF and less cardiac fibrosis. RIPC prevented mitochondrial fragmentation and dysregulated autophagy from AIC early stages. RIPC is a promising intervention for testing in clinical trials in AIC.
Project description:New treatments are needed to prevent adverse left ventricular remodelling following acute myocardial infarction (AMI), in order to prevent heart failure and improve clinical outcomes following AMI. Remote ischemic conditioning (RIC) using transient limb ischemia and reperfusion has been reported to reduce myocardial infarct (MI) size in AMI patients treated by primary percutaneous coronary intervention, and whether it can improve clinical outcomes is currently being investigated. Interestingly, repeated daily episode of limb RIC (termed 'chronic remote ischemic conditioning', or CRIC) has been shown in experimental and clinical studies to confer beneficial effects on post-AMI cardiac remodelling and chronic heart failure. In addition, the beneficial effects of CRIC extend to vascular function, peripheral arterial disease and stroke. In this review article, we focus on the therapeutic potential of CRIC as a strategy for cardiovascular protection and for improving clinical outcomes in patients with cardiovascular disease.
Project description:Remote ischemic conditioning (RIC) is a therapeutic strategy for protecting organs or tissue against the detrimental effects of acute ischemia-reperfusion injury (IRI). It describes an endogenous phenomenon in which the application of one or more brief cycles of non-lethal ischemia and reperfusion to an organ or tissue protects a remote organ or tissue from a sustained episode of lethal IRI. Although RIC protection was first demonstrated to protect the heart against acute myocardial infarction, its beneficial effects are also seen in other organs (lung, liver, kidney, intestine, brain) and tissues (skeletal muscle) subjected to acute IRI. The recent discovery that RIC can be induced non-invasively by simply inflating and deflating a standard blood pressure cuff placed on the upper arm or leg, has facilitated its translation into the clinical setting, where it has been reported to be beneficial in a variety of cardiac scenarios. In this review article we provide an overview of RIC, the potential underlying mechanisms, and its potential as a novel therapeutic strategy for protecting the heart and other organs from acute IRI.