Ontology highlight
ABSTRACT: Aims
Glucokinase (GK) is expressed in the glucose-sensing cells of the islets of Langerhans and plays a critical role in glucose homeostasis. Here, we tested the hypothesis that genetic activation of GK in a small subset of β-cells is sufficient to change the glucose set-point of the whole islet.Material and methods
Mouse models of cell-type specific GK deficiency (GKKO) and genetic enzyme activation (GKKI) in a subset of β-cells were obtained by crossing the αGSU (gonadotropin alpha subunit)-Cre transgene with the appropriate GK mutant alleles. Metabolic analyses consisted of glucose tolerance tests, perifusion of isolated islets and intracellular calcium measurements.Key findings
The αGSU-Cre transgene produced genetically mosaic islets, as Cre was active in 15 ± 1.2 % of β-cells. While mice deficient for GK in a subset of islet cells were normal, unexpectedly, GKKI mice were chronically hypoglycemic, glucose intolerant, and had a lower threshold for glucose stimulated insulin secretion. GKKI mice exhibited an average fasting blood glucose level of 3.5 mM. GKKI islets responded with intracellular calcium signals that spread through the whole islets at 1 mM and secreted insulin at 3 mM glucose.Significance
Genetic activation of GK in a minority of β-cells is sufficient to change the glucose threshold for insulin secretion in the entire islet and thereby glucose homeostasis in the whole animal. These data support the model in which β-cells with higher GK activity function as 'hub' or 'trigger' cells and thus control insulin secretion by the β-cell collective within the islet.
SUBMITTER: Chen KH
PROVIDER: S-EPMC10312065 | biostudies-literature | 2022 Nov
REPOSITORIES: biostudies-literature
Chen Kevin H KH Doliba Nicolai N May Catherine L CL Roman Jeffrey J Ustione Alessandro A Tembo Teguru T Negron Ariel A Radovick Sally S Piston David W DW Glaser Benjamin B Kaestner Klaus H KH Matschinsky Franz M FM
Life sciences 20220911
<h4>Aims</h4>Glucokinase (GK) is expressed in the glucose-sensing cells of the islets of Langerhans and plays a critical role in glucose homeostasis. Here, we tested the hypothesis that genetic activation of GK in a small subset of β-cells is sufficient to change the glucose set-point of the whole islet.<h4>Material and methods</h4>Mouse models of cell-type specific GK deficiency (GKKO) and genetic enzyme activation (GKKI) in a subset of β-cells were obtained by crossing the αGSU (gonadotropin a ...[more]