Project description:During a mouse plague in early 2021, a farmer from New South Wales, Australia, sought treatment for aseptic meningitis and was subsequently diagnosed with locally acquired lymphocytic choriomeningitis virus infection. Whole-genome sequencing identified a divergent and geographically distinct lymphocytic choriomeningitis virus strain compared with other published sequences.
Project description:The experimental data indicate that during a persistent infection, lymphocytic choriomeningitis virus (LCMV) may both directly or indirectly modulate the regulatory cellular processes and alter the cellular functions that are not critical for the survival, but are needed for the homeostasis in the organism. Two-dimensional differential in-gel electrophoresis (2D-DIGE) and MALDI-TOF MS/MS analyses were used to determine the cellular proteome response of HeLa cell line to persistent LCMV infection. Quantitative analysis revealed 24 differentially abundant proteins, half of which were up-regulated and the rest down-regulated. Functional categorization showed that LCMV-responsive proteins were mainly involved in metabolism, stress and defense responses. Among identified proteins, significant changes were found for peroxiredoxins, family of antioxidant enzymes. Decreased amount of these antioxidant proteins was accompanied with the elevation of ROS content in infected cells.
Project description:Mammarenavirus are a large family of enveloped negative-strand RNA viruses that include several agents responsible for severe hemorrhagic fevers. Until now, no FDA-licensed drug has been admitted for treating an arenavirus infection, and only few effective anti-arenavirus drugs have been tested in vivo. In this work, we designed a recombinant reporter arenavirus lymphocytic choriomeningitis virus that stably expressed nanoluciferase (LCMV-Nluc). The LCMV-Nluc was proved to share similar biological properties with wild-type LCMV and the Nluc intensity reliably reflected viral replication both in vitro and in vivo. Replication of the Nluc-encoding virus in living mice can be visualized by real-time bioluminescent imaging, and bioluminescence can be detected in a variety of organs of infected mice. This work provides a novel approach that enables real-time study of the arenavirus infection and is a convenient and valuable tool for screening of compounds that are active against arenaviruses in vitro and in living mice.
Project description:Mammalian arenaviruses are rodent-borne zoonotic viruses, some of which can cause fatal hemorrhagic diseases in humans. The first discovered arenavirus, lymphocytic choriomeningitis virus (LCMV), has a worldwide distribution and can be fatal for transplant recipients. However, no FDA-approved drugs or vaccines are currently available. In this study, using a quantitative proteomic analysis, we identified a variety of host factors that could be needed for LCMV infection, among which we found that protein disulfide isomerase A4 (PDIA4), a downstream factor of endoplasmic reticulum stress (ERS), is important for LCMV infection. Biochemical analysis revealed that LCMV glycoprotein was the main viral component accounting for PDIA4 upregulation. The inhibition of ATF6-mediated ERS could prevent the upregulation of PDIA4 that was stimulated by LCMV infection. We further found that PDIA4 can affect the LCMV viral RNA synthesis processes and release. In summary, we conclude that PDIA4 could be a new target for antiviral drugs against LCMV.
Project description:In contrast to most enveloped viruses that enter the host cell via clathrin-dependent endocytosis, the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) enters cells via noncoated vesicles that deliver the virus to endosomes, where pH-dependent membrane fusion occurs. Here, we investigated the initial steps of LCMV infection. We found that the attachment of LCMV to its cellular receptor alpha-dystroglycan occurs rapidly and is not dependent on membrane cholesterol. However, subsequent virus internalization is sensitive to cholesterol depletion, indicating the involvement of a cholesterol-dependent pathway. We provide evidence that LCMV entry involves an endocytotic pathway that is independent of clathrin and caveolin and that does not require the GTPase dynamin. In addition, neither the structural integrity nor the dynamics of the actin cytoskeleton are required for infection. These findings indicate that the prototypic Old World arenavirus LCMV uses a mechanism of entry that is different from clathrin-mediated endocytosis, which is used by the New World arenavirus Junin virus, and pathways used by other enveloped viruses.
Project description:The glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV), the prototype arenavirus, is a promising envelope protein of lentiviral pseudotype vectors for gene therapy. The distribution of dystroglycan, a known receptor for LCMV, cannot explain the narrow tropism of LCMV-GP-pseudotypes. Here, we examined whether infection of LCMV-GP-pseudotypes was affected by the expression of four cell surface molecules-Axl and Tyro3 (from the TAM family) and DC-SIGN and LSECtin (from the C-type lectin family)-that are known receptors of Lassa virus, another arenavirus. All four molecules enhanced LCMV-GP-pseudotype infection of cells. These results help explain the tropism of LCMV-GP-pseudotypes and further our understanding of LCMV infection in animals.
Project description:Activation of CD4(+) T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4(+) T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2(d). This is quite disparate to the H-2(b) setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2(d) or whether additional CD4(+) T-cell epitopes could be identified in the setting of the H-2(b) background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4(+) T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4(+) epitopes, four of them also stimulate CD8(+) T cells in a statistically significant manner. Furthermore, we assessed these CD4(+) T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4(+) and CD8(+) T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.
Project description:Although cellular immunity to acute lymphocytic choriomeningitis virus (LCMV) infection has been well characterized in experimental studies in mice, the T cell response to this virus in humans is incompletely understood. Thus, we analyzed the breadths, magnitudes, and differentiation phenotypes of memory LCMV-specific CD8(+) and CD4(+) T cells in three human donors displaying a variety of disease outcomes after accidental needle stick injury or exposure to LCMV. Although only a small cohort of donors was analyzed at a single time point postinfection, several interesting observations were made. First, we were able to detect LCMV-specific CD8(+) and CD4(+) T cell responses directly ex vivo at 4 to 8 years after exposure, demonstrating the longevity of T cell memory in humans. Second, unlike in murine models of LCMV infection, we found that the breadths of memory CD8(+) and CD4(+) T cell responses were not significantly different from one another. Third, it seemed that the overall CD8(+) T cell response was augmented with increasing severity of disease, while the LCMV-specific CD4(+) T cell response magnitude was highly variable between the three different donors. Next, we found that LCMV-specific CD8(+) T cells in the three donors analyzed seemed to undergo an effector memory differentiation program distinct from that of CD4(+) T cells. Finally, the levels of expression of memory, costimulatory, and inhibitory receptors on CD8(+) and CD4(+) T cell subsets, in some instances, correlated with disease outcome. These data demonstrate for the first time LCMV-specific CD8(+) and CD4(+) T cells in infected humans and begin to provide new insights into memory T cell responses following an acute virus infection.
Project description:Arenaviruses such as Lassa fever virus (LASV) and lymphocytic choriomeningitis virus (LCMV) are benign in their natural reservoir hosts, and can occasionally cause severe viral hemorrhagic fever (VHF) in non-human primates and in human beings. LCMV is considerably more benign for human beings than Lassa virus, however certain strains, like the LCMV-WE strain, can cause severe disease when the virus is delivered as a high-dose inoculum. Here we describe a rhesus macaque model for Lassa fever that employs a virulent strain of LCMV. Since LASV must be studied within Biosafety Level-4 (BSL-4) facilities, the LCMV-infected macaque model has the advantage that it can be used at BSL-3. LCMV-induced disease is rarely as severe as other VHF, but it is similar in cases where vascular leakage leads to lethal systemic failure. The LCMV-infected macaque has been valuable for describing the course of disease with differing viral strains, doses and routes of infection. By monitoring system-wide changes in physiology and gene expression in a controlled experimental setting, it is possible to identify events that are pathognomonic for developing VHF and potential treatment targets.
Project description:Lymphocytic choriomeningitis virus (LCMV) was detected in 2 patients with acute meningitis in southern Spain within a 3-year period. Although the prevalence of LCMV infection was low (2 [1.3%] of 159 meningitis patients), it represents 2.9% of all pathogens detected. LCMV is a noteworthy agent of neurologic illness in immunocompetent persons.