Unknown

Dataset Information

0

Assessing physical abilities of sarcopenia patients using gait analysis and smart insole for development of digital biomarker.


ABSTRACT: The aim of this study is to compare variable importance across multiple measurement tools, and to use smart insole and artificial intelligence (AI) gait analysis to create variables that can evaluate the physical abilities of sarcopenia patients. By analyzing and comparing sarcopenia patients with non sarcopenia patients, this study aims to develop predictive and classification models for sarcopenia and discover digital biomarkers. The researchers used smart insole equipment to collect plantar pressure data from 83 patients, and a smart phone to collect video data for pose estimation. A Mann-Whitney U was conducted to compare the sarcopenia group of 23 patients and the control group of 60 patients. Smart insole and pose estimation were used to compare the physical abilities of sarcopenia patients with a control group. Analysis of joint point variables showed significant differences in 12 out of 15 variables, but not in knee mean, ankle range, and hip range. These findings suggest that digital biomarkers can be used to differentiate sarcopenia patients from the normal population with improved accuracy. This study compared musculoskeletal disorder patients to sarcopenia patients using smart insole and pose estimation. Multiple measurement methods are important for accurate sarcopenia diagnosis and digital technology has potential for improving diagnosis and treatment.

SUBMITTER: Kim S 

PROVIDER: S-EPMC10313812 | biostudies-literature | 2023 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Assessing physical abilities of sarcopenia patients using gait analysis and smart insole for development of digital biomarker.

Kim Shinjune S   Park Seongjin S   Lee Sangyeob S   Seo Sung Hyo SH   Kim Hyeon Su HS   Cha Yonghan Y   Kim Jung-Taek JT   Kim Jin-Woo JW   Ha Yong-Chan YC   Yoo Jun-Il JI  

Scientific reports 20230630 1


The aim of this study is to compare variable importance across multiple measurement tools, and to use smart insole and artificial intelligence (AI) gait analysis to create variables that can evaluate the physical abilities of sarcopenia patients. By analyzing and comparing sarcopenia patients with non sarcopenia patients, this study aims to develop predictive and classification models for sarcopenia and discover digital biomarkers. The researchers used smart insole equipment to collect plantar p  ...[more]

Similar Datasets

| S-EPMC10751435 | biostudies-literature
| S-EPMC7070759 | biostudies-literature
| S-EPMC7293689 | biostudies-literature
| S-EPMC6767662 | biostudies-literature
| S-EPMC9326397 | biostudies-literature
| S-EPMC10541311 | biostudies-literature
| S-EPMC9572216 | biostudies-literature
| S-EPMC8433384 | biostudies-literature
| S-EPMC6998214 | biostudies-literature
| S-EPMC11479076 | biostudies-literature