Unknown

Dataset Information

0

Impedance-based sensors discriminate among different types of blood thrombi with very high specificity and sensitivity.


ABSTRACT:

Background

Intracranial occlusion recanalization fails in 20% of endovascular thrombectomy procedures, and thrombus composition is likely to be an important factor. In this study, we demonstrate that the combination of electrical impedance spectroscopy (EIS) and machine learning constitutes a novel and highly accurate method for the identification of different human thrombus types.

Methods

134 samples, subdivided into four categories, were analyzed by EIS: 29 'White', 26 'Mixed', 12 'Red' thrombi, and 67 liquid 'Blood' samples. Thrombi were generated in vitro using citrated human blood from five healthy volunteers. Histological analysis was performed to validate the thrombus categorization based on red blood cell content. A machine learning prediction model was trained on impedance data to differentiate blood samples from any type of thrombus and in between the four sample categories.

Results

Histological analysis confirmed the similarity between the composition of in vitro generated thrombi and retrieved human thrombi. The prediction model yielded a sensitivity/specificity of 90%/99% for distinguishing blood samples from thrombi and a global accuracy of 88% for differentiating among the four sample categories.

Conclusions

Combining EIS measurements with machine learning provides a highly effective approach for discriminating among different thrombus types and liquid blood. These findings raise the possibility of developing a probe-like device (eg, a neurovascular guidewire) integrating an impedance-based sensor. This sensor, placed in the distal part of the smart device, would allow the characterization of the probed thrombus on contact. The information could help physicians identify optimal thrombectomy strategies to improve outcomes for stroke patients.

SUBMITTER: Messina P 

PROVIDER: S-EPMC10314040 | biostudies-literature | 2023 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Impedance-based sensors discriminate among different types of blood thrombi with very high specificity and sensitivity.

Messina Pierluca P   Garcia Cédric C   Rambeau Joachim J   Darcourt Jean J   Balland Ronan R   Carreel Bruno B   Cottance Myline M   Gusarova Elena E   Lafaurie-Janvore Julie J   Lebedev Gor G   Bozsak Franz F   Barakat Abdul I AI   Payrastre Bernard B   Cognard Christophe C  

Journal of neurointerventional surgery 20220427 6


<h4>Background</h4>Intracranial occlusion recanalization fails in 20% of endovascular thrombectomy procedures, and thrombus composition is likely to be an important factor. In this study, we demonstrate that the combination of electrical impedance spectroscopy (EIS) and machine learning constitutes a novel and highly accurate method for the identification of different human thrombus types.<h4>Methods</h4>134 samples, subdivided into four categories, were analyzed by EIS: 29 'White', 26 'Mixed',  ...[more]

Similar Datasets

| S-EPMC6180596 | biostudies-literature
| S-EPMC11872950 | biostudies-literature
| S-EPMC6819231 | biostudies-literature
| S-EPMC4858685 | biostudies-literature
| S-EPMC3517100 | biostudies-literature
| S-EPMC9734647 | biostudies-literature
| S-EPMC5540457 | biostudies-literature
| S-EPMC2832627 | biostudies-literature
| S-EPMC7511300 | biostudies-literature
| S-EPMC3483800 | biostudies-literature