Ontology highlight
ABSTRACT: Purpose
Prior artificial intelligence (AI) models for predicting glaucoma progression have used traditional classifiers that do not consider the longitudinal nature of patients' follow-up. In this study, we developed survival-based AI models for predicting glaucoma patients' progression to surgery, comparing performance of regression-, tree-, and deep learning-based approaches.Design
Retrospective observational study.Subjects
Patients with glaucoma seen at a single academic center from 2008 to 2020 identified from electronic health records (EHRs).Methods
From the EHRs, we identified 361 baseline features, including demographics, eye examinations, diagnoses, and medications. We trained AI survival models to predict patients' progression to glaucoma surgery using the following: (1) a penalized Cox proportional hazards (CPH) model with principal component analysis (PCA); (2) random survival forests (RSFs); (3) gradient-boosting survival (GBS); and (4) a deep learning model (DeepSurv). The concordance index (C-index) and mean cumulative/dynamic area under the curve (mean AUC) were used to evaluate model performance on a held-out test set. Explainability was investigated using Shapley values for feature importance and visualization of model-predicted cumulative hazard curves for patients with different treatment trajectories.Main outcome measures
Progression to glaucoma surgery.Results
Of the 4512 patients with glaucoma, 748 underwent glaucoma surgery, with a median follow-up of 1038 days. The DeepSurv model performed best overall (C-index, 0.775; mean AUC, 0.802) among the models studied in this article (CPH with PCA: C-index, 0.745; mean AUC, 0.780; RSF: C-index, 0.766; mean AUC, 0.804; GBS: C-index, 0.764; mean AUC, 0.791). Predicted cumulative hazard curves demonstrate how models could distinguish between patient who underwent early surgery and patients who underwent surgery after > 3000 days of follow-up or no surgery.Conclusions
Artificial intelligence survival models can predict progression to glaucoma surgery using structured data from EHRs. Tree-based and deep learning-based models performed better at predicting glaucoma progression to surgery than the CPH regression model, potentially because of their better suitability for high-dimensional data sets. Future work predicting ophthalmic outcomes should consider using tree-based and deep learning-based survival AI models. Additional research is needed to develop and evaluate more sophisticated deep learning survival models that can incorporate clinical notes or imaging.Financial disclosures
Proprietary or commercial disclosure may be found after the references.
SUBMITTER: Tao S
PROVIDER: S-EPMC10320266 | biostudies-literature | 2023 Dec
REPOSITORIES: biostudies-literature
Ophthalmology science 20230525 4
<h4>Purpose</h4>Prior artificial intelligence (AI) models for predicting glaucoma progression have used traditional classifiers that do not consider the longitudinal nature of patients' follow-up. In this study, we developed survival-based AI models for predicting glaucoma patients' progression to surgery, comparing performance of regression-, tree-, and deep learning-based approaches.<h4>Design</h4>Retrospective observational study.<h4>Subjects</h4>Patients with glaucoma seen at a single academ ...[more]