Unknown

Dataset Information

0

Hybrid Metasurfaces for Perfect Transmission and Customized Manipulation of Sound Across Water-Air Interface.


ABSTRACT: Extreme impedance mismatch causes sound insulation at water-air interfaces, limiting numerous cross-media applications such as ocean-air wireless acoustic communication. Although quarter-wave impedance transformers can improve transmission, they are not readily available for acoustics and are restricted by the fixed phase shift at full transmission. Here, this limitation is broken through impedance-matched hybrid metasurfaces assisted by topology optimization. Sound transmission enhancement and phase modulation across the water-air interface are achieved independently. Compared to the bare water-air interface, it is experimentally observed that the average transmitted amplitude through an impedance-matched metasurface at the peak frequency is enhanced by ≈25.9 dB, close to the limit of the perfect transmission 30 dB. And nearly 42 dB amplitude enhancement is measured by the hybrid metasurfaces with axial focusing function. Various customized vortex beams are experimentally realized to promote applications in ocean-air communication. The physical mechanisms of sound transmission enhancement for broadband and wide-angle incidences are revealed. The proposed concept has potential applications in efficient transmission and free communication across dissimilar media.

SUBMITTER: Zhou HT 

PROVIDER: S-EPMC10323646 | biostudies-literature | 2023 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hybrid Metasurfaces for Perfect Transmission and Customized Manipulation of Sound Across Water-Air Interface.

Zhou Hong-Tao HT   Zhang Shao-Cong SC   Zhu Tong T   Tian Yu-Ze YZ   Wang Yan-Feng YF   Wang Yue-Sheng YS  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20230420 19


Extreme impedance mismatch causes sound insulation at water-air interfaces, limiting numerous cross-media applications such as ocean-air wireless acoustic communication. Although quarter-wave impedance transformers can improve transmission, they are not readily available for acoustics and are restricted by the fixed phase shift at full transmission. Here, this limitation is broken through impedance-matched hybrid metasurfaces assisted by topology optimization. Sound transmission enhancement and  ...[more]

Similar Datasets

| S-EPMC11440645 | biostudies-literature
| S-EPMC9089336 | biostudies-literature
| S-EPMC3503180 | biostudies-literature
| S-EPMC10197129 | biostudies-literature
| S-EPMC6294143 | biostudies-literature
| S-EPMC10448488 | biostudies-literature
| S-EPMC5882839 | biostudies-other
| S-EPMC8154875 | biostudies-literature
| S-EPMC3296044 | biostudies-literature
| S-EPMC3794946 | biostudies-literature