Project description:Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Project description:Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans. Host range breaches are limited by incompatibilities between avian virus components and the human host. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the leucine-rich repeats and carboxy-terminal low-complexity acidic region domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian-adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity, whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2(E627K), were rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapting the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals.
Project description:Human ANP32A/B (huANP32A/B) poorly support the polymerase activity of avian influenza viruses (AIVs), thereby limiting interspecies transmission of AIVs from birds to humans. The SUMO-interacting motif (SIM) within NS2 promotes the adaptation of AIV polymerase to huANP32A/B via a yet undisclosed mechanism. Here we show that huANP32A/B are SUMOylated by the E3 SUMO ligase PIAS2α, and deSUMOylated by SENP1. SUMO modification of huANP32A/B results in the recruitment of NS2, thereby facilitating huANP32A/B-supported AIV polymerase activity. Such a SUMO-dependent recruitment of NS2 is mediated by its association with huANP32A/B via the SIM-SUMO interaction module, where K68/K153-SUMO in huANP32A or K68/K116-SUMO in huANP32B interacts with the NS2-SIM. The SIM-SUMO-mediated interactions between NS2 and huANP32A/B function to promote AIV polymerase activity by positively regulating AIV vRNP-huANP32A/B interactions and AIV vRNP assembly. Our study offers insights into the mechanism of NS2-SIM in facilitating AIVs adaptation to mammals.
Project description:H10 subtype avian influenza viruses were endemic in wild and domestic avian species worldwide. Strikingly, it frequently crossed the species barrier to infect mammalian hosts. Human infection with H10N3 and H10N8 were reported previously. Recently, a 63-year-old woman from Anhui province of China who died from a mixed infection of H3N2 and H10N5 influenza viruses, which have drawn widespread public health attention. Here, we perform the evolutionary dynamics of H10N5 influenza viruses of bird- and human-origin worldwide, and found that wild bird-origin H10N5 influenza viruses from China did not cluster together with human-origin H10N5 influenza viruses, while grouped together with LPAIV gene pools circulating in wild birds that derived from other Eurasian countries. Human-derived H10N5 virus is a novel reassortant, which frequently reassorted with wild bird-derived influenza viruses, and in turn, spillover into humans. Collectively, our results suggested that H10 subtype influenza viruses continuously pose threat to public health.
Project description:Influenza viruses rapidly diversify within individual human infections. Several recent studies have deep-sequenced clinical influenza infections to identify viral variation within hosts, but it remains unclear how within-host mutations fare at the between-host scale. Here, we compare the genetic variation of H3N2 influenza within and between hosts to link viral evolutionary dynamics across scales. Synonymous sites evolve at similar rates at both scales, indicating that global evolution at these putatively neutral sites results from the accumulation of within-host variation. However, nonsynonymous mutations are depleted between hosts compared to within hosts, suggesting that selection purges many of the protein-altering changes that arise within hosts. The exception is at antigenic sites, where selection detectably favors nonsynonymous mutations at the global scale, but not within hosts. These results suggest that selection against deleterious mutations and selection for antigenic change are the main forces that act on within-host variants of influenza virus as they transmit and circulate between hosts.
Project description:Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for antiviral drug development. Here we use an integrative systems approach, based on genome-wide RNA interference screening, to identify 295 cellular cofactors required for early-stage influenza virus replication. Within this group, those involved in kinase-regulated signalling, ubiquitination and phosphatase activity are the most highly enriched, and 181 factors assemble into a highly significant host-pathogen interaction network. Moreover, 219 of the 295 factors were confirmed to be required for efficient wild-type influenza virus growth, and further analysis of a subset of genes showed 23 factors necessary for viral entry, including members of the vacuolar ATPase (vATPase) and COPI-protein families, fibroblast growth factor receptor (FGFR) proteins, and glycogen synthase kinase 3 (GSK3)-beta. Furthermore, 10 proteins were confirmed to be involved in post-entry steps of influenza virus replication. These include nuclear import components, proteases, and the calcium/calmodulin-dependent protein kinase (CaM kinase) IIbeta (CAMK2B). Notably, growth of swine-origin H1N1 influenza virus is also dependent on the identified host factors, and we show that small molecule inhibitors of several factors, including vATPase and CAMK2B, antagonize influenza virus replication.
Project description:Phylogenetic analysis of 20 influenza A virus PB2 genes showed that PB2 genes have evolved into the following four major lineages: (i) equine/Prague/56 (EQPR56); (ii and iii) two distinct avian PB2 lineages, one containing FPV/34 and H13 gull virus strains and the other containing North American avian and recent equine strains; and (iv) human virus strains joined with classic swine virus strains (i.e., H1N1 swine virus strains related to swine/Iowa/15/30). The human virus lineage showed the greatest divergence from its root relative to other lineages. The estimated nucleotide evolutionary rate for the human PB2 lineage was 1.82 x 10(-3) changes per nucleotide per year, which is within the range of published estimates for NP and NS genes of human influenza A viruses. At the amino acid level, PB2s of human viruses have accumulated 34 amino acid changes over the past 55 years. In contrast, the avian PB2 lineages showed much less evolution, e.g., recent avian PB2s showed as few as three amino acid changes relative to the avian root. The completion of evolutionary analyses of the PB1, PB2, PA and NP genes of the ribonucleoprotein (RNP) complex permits comparison of evolutionary pathways. Different patterns of evolution among the RNP genes indicate that the genes of the complex are not coevolving as a unit. Evolution of the PB1 and PB2 genes is less correlated with host-specific factors, and their proteins appear to be evolving more slowly than NP and PA. This suggests that protein functional constraints are limiting the evolutionary divergence of PB1 and PB2 genes. The parallel host-specific evolutionary pathways of the NP and PA genes suggest that these proteins are coevolving in response to host-specific factors. PB2s of human influenza A viruses share a common ancestor with classic swine virus PB2s, and the pattern of evolution suggests that the ancestor was an avian virus PB2. This same pattern of evolution appears in the other genes of the RNP complex. Antigenic studies of HA and NA proteins and sequence comparisons of NS and M genes also suggest a close ancestry for these genes in human and classic swine viruses. From our review of the evolutionary patterns of influenza A virus genes, we propose the following hypothesis: the common ancestor to current strains of human and classic swine influenza viruses predated the 1918 human pandemic virus and was recently derived from the avian host reservoir.
Project description:The human antibody response to influenza virus infection or vaccination is as complicated as it is essential for protection against flu. The constant antigenic changes of the virus to escape human herd immunity hinder the yearly selection of vaccine strains since it is hard to predict which virus strains will circulate for the coming flu season. A "universal" influenza vaccine that could induce broad cross-influenza subtype protection would help to address this issue. However, the human antibody response is intricate and often obscure, with factors such as antigenic seniority or original antigenic sin (OAS), and back-boosting ensuring that each person mounts a unique immune response to infection or vaccination with any new influenza virus strain. Notably, the effects of existing antibodies on cross-protective immunity after repeated vaccinations are unclear. More research is needed to characterize the mechanisms at play, but traditional assays such as hemagglutinin inhibition (HAI) and microneutralization (MN) are excessively limited in scope and too resource-intensive to effectively meet this challenge. In the past ten years, new multiple dimensional assays (MDAs) have been developed to help overcome these problems by simultaneously measuring antibodies against a large panel of influenza hemagglutinin (HA) proteins with a minimal amount of sample in a high throughput way. MDAs will likely be a powerful tool for accelerating the study of the humoral immune response to influenza vaccination and the development of a universal influenza vaccine.
Project description:Serine incorporator 5 (Ser5), a transmembrane protein, has recently been identified as a host antiviral factor against human immunodeficiency virus (HIV)-1 and gammaretroviruses like murine leukemia viruses (MLVs). It is counteracted by HIV-1 Nef and MLV glycogag. We have investigated whether it has antiviral activity against influenza A virus (IAV), as well as retroviruses. Here, we demonstrated that Ser5 inhibited HIV-1-based pseudovirions bearing IAV hemagglutinin (HA); as expected, the Ser5 effect on this glycoprotein was antagonized by HIV-1 Nef protein. We found that Ser5 inhibited the virus-cell and cell-cell fusion of IAV, apparently by interacting with HA proteins. Most importantly, overexpressed and endogenous Ser5 inhibited infection by authentic IAV. Single-molecular fluorescent resonance energy transfer (smFRET) analysis further revealed that Ser5 both destabilized the pre-fusion conformation of IAV HA and inhibited the coiled-coil formation during membrane fusion. Ser5 is expressed in cultured small airway epithelial cells, as well as in immortal human cell lines. In summary, Ser5 is a host antiviral factor against IAV which acts by blocking HA-induced membrane fusion. IMPORTANCE SERINC5 (Ser5) is a cellular protein which has been found to interfere with the infectivity of HIV-1 and a number of other retroviruses. Virus particles produced in the presence of Ser5 are impaired in their ability to enter new host cells, but the mechanism of Ser5 action is not well understood. We now report that Ser5 also inhibits infectivity of Influenza A virus (IAV) and that it interferes with the conformational changes in IAV hemagglutinin protein involved in membrane fusion and virus entry. These findings indicate that the antiviral function of Ser5 extends to other viruses as well as retroviruses, and also provide some information on the molecular mechanism of its antiviral activity.
Project description:We used correlated divergence analysis to determine which factors have been most closely associated with changes in seed mass during seed plant evolution. We found that divergences in seed mass have been more consistently associated with divergences in growth form than with divergences in any other variable. This finding is consistent with the strong relationship between seed mass and growth form across present-day species and with the available data from the paleobotanical literature. Divergences in seed mass have also been associated with divergences in latitude, net primary productivity, temperature, precipitation, and leaf area index. However, these environmental variables had much less explanatory power than did plant traits such as seed dispersal syndrome and plant growth form.