Enhancing cell adhesive and antibacterial activities of glass-fibre-reinforced polyetherketoneketone through Mg and Ag PIII.
Ontology highlight
ABSTRACT: Glass-fibre-reinforced polyetherketoneketone (PEKK-GF) shows great potential for application as a dental implant restoration material; however, its surface bioinertness and poor antibacterial properties limit its integration with peri-implant soft tissue, which is critical in the long-term success of implant restoration. Herein, functional magnesium (Mg) and silver (Ag) ions were introduced into PEKK-GF by plasma immersion ion implantation (PIII). Surface characterization confirmed that the surface morphology of PEKK-GF was not visibly affected by PIII treatment. Further tests revealed that PIII changed the wettability and electrochemical environment of the PEKK-GF surface and enabled the release of Mg2+ and Ag+ modulated by Giavanni effect. In vitro experiments showed that Mg/Ag PIII-treated PEKK-GF promoted the proliferation and adhesion of human gingival fibroblasts and upregulated the expression of adhesion-related genes and proteins. In addition, the treated samples inhibited the metabolic viability and adhesion of Streptococcus mutans and Porphyromonas gingivalis on their surfaces, distorting bacterial morphology. Mg/Ag PIII surface treatment improved the soft tissue integration and antibacterial activities of PEKK-GF, which will further support and broaden its adoption in dentistry.
SUBMITTER: Tan X
PROVIDER: S-EPMC10363026 | biostudies-literature | 2023
REPOSITORIES: biostudies-literature
ACCESS DATA