Unknown

Dataset Information

0

GestaltMatcher Database - A global reference for the facial phenotypic variability of rare human diseases.


ABSTRACT: Dysmorphologists sometimes encounter challenges in recognizing disorders due to phenotypic variability influenced by factors such as age and ethnicity. Moreover, the performance of Next Generation Phenotyping Tools such as GestaltMatcher is dependent on the diversity of the training set. Therefore, we developed GestaltMatcher Database (GMDB) - a global reference for the phenotypic variability of rare diseases that complies with the FAIR-principles. We curated dysmorphic patient images and metadata from 2,224 publications, transforming GMDB into an online dynamic case report journal. To encourage clinicians worldwide to contribute, each case can receive a Digital Object Identifier (DOI), making it a citable micro-publication. This resulted in a collection of 2,312 unpublished images, partly with longitudinal data. We have compiled a collection of 10,189 frontal images from 7,695 patients representing 683 disorders. The web interface enables gene- and phenotype-centered queries for registered users (https://db.gestaltmatcher.org/). Despite the predominant European ancestry of most patients (59%), our global collaborations have facilitated the inclusion of data from frequently underrepresented ethnicities, with 17% Asian, 4% African, and 6% with other ethnic backgrounds. The analysis has revealed a significant enhancement in GestaltMatcher performance across all ethnic groups, incorporating non-European ethnicities, showcasing a remarkable increase in Top-1-Accuracy by 31.56% and Top-5-Accuracy by 12.64%. Importantly, this improvement was achieved without altering the performance metrics for European patients. GMDB addresses dysmorphology challenges by representing phenotypic variability and including underrepresented groups, enhancing global diagnostic rates and serving as a vital clinician reference database.

SUBMITTER: Lesmann H 

PROVIDER: S-EPMC10371103 | biostudies-literature | 2024 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

GestaltMatcher Database - A global reference for facial phenotypic variability in rare human diseases.

Lesmann Hellen H   Hustinx Alexander A   Moosa Shahida S   Klinkhammer Hannah H   Marchi Elaine E   Caro Pilar P   Abdelrazek Ibrahim M IM   Pantel Jean Tori JT   Hagen Merle Ten MT   Thong Meow-Keong MK   Mazlan Rifhan Azwani Binti RAB   Tae Sok Kun SK   Kamphans Tom T   Meiswinkel Wolfgang W   Li Jing-Mei JM   Javanmardi Behnam B   Knaus Alexej A   Uwineza Annette A   Knopp Cordula C   Tkemaladze Tinatin T   Elbracht Miriam M   Mattern Larissa L   Jamra Rami Abou RA   Velmans Clara C   Strehlow Vincent V   Jacob Maureen M   Peron Angela A   Dias Cristina C   Nunes Beatriz Carvalho BC   Vilella Thainá T   Pinheiro Isabel Furquim IF   Kim Chong Ae CA   Melaragno Maria Isabel MI   Weiland Hannah H   Kaptain Sophia S   Chwiałkowska Karolina K   Kwasniewski Miroslaw M   Saad Ramy R   Wiethoff Sarah S   Goel Himanshu H   Tang Clara C   Hau Anna A   Barakat Tahsin Stefan TS   Panek Przemysław P   Nabil Amira A   Suh Julia J   Braun Frederik F   Gomy Israel I   Averdunk Luisa L   Ekure Ekanem E   Bergant Gaber G   Peterlin Borut B   Graziano Claudio C   Gaboon Nagwa N   Fiesco-Roa Moisés M   Spinelli Alessandro Mauro AM   Wilpert Nina-Maria NM   Phowthongkum Prasit P   Güzel Nergis N   Haack Tobias B TB   Bitar Rana R   Tzschach Andreas A   Rodriguez-Palmero Agusti A   Brunet Theresa T   Rudnik-Schöneborn Sabine S   Contreras-Capetillo Silvina Noemi SN   Oberlack Ava A   Samango-Sprouse Carole C   Sadeghin Teresa T   Olaya Margaret M   Platzer Konrad K   Borovikov Artem A   Schnabel Franziska F   Heuft Lara L   Herrmann Vera V   Oegema Renske R   Elkhateeb Nour N   Kumar Sheetal S   Komlosi Katalin K   Mohamed Khoushoua K   Kalantari Silvia S   Sirchia Fabio F   Martinez-Monseny Antonio F AF   Höller Matthias M   Toutouna Louiza L   Mohamed Amal A   Lasa-Aranzasti Amaia A   Sayer John A JA   Ehmke Nadja N   Danyel Magdalena M   Sczakiel Henrike H   Schwartzmann Sarina S   Boschann Felix F   Zhao Max M   Adam Ronja R   Einicke Lara L   Horn Denise D   Chew Kee Seang KS   Kam Choy Chen CC   Karakoyun Miray M   Pode-Shakked Ben B   Eliyahu Aviva A   Rock Rachel R   Carrion Teresa T   Chorin Odelia O   Zarate Yuri A YA   Conti Marcelo Martinez MM   Karakaya Mert M   Tung Moon Ley ML   Chandra Bharatendu B   Bouman Arjan A   Lumaka Aime A   Wasif Naveed N   Shinawi Marwan M   Blackburn Patrick R PR   Wang Tianyun T   Niehues Tim T   Schmidt Axel A   Roth Regina Rita RR   Wieczorek Dagmar D   Hu Ping P   Waikel Rebekah L RL   Ledgister Hanchard Suzanna E SE   Elmakkawy Gehad G   Safwat Sylvia S   Ebstein Frédéric F   Krüger Elke E   Küry Sébastien S   Bézieau Stéphane S   Arlt Annabelle A   Olinger Eric E   Marbach Felix F   Li Dong D   Dupuis Lucie L   Mendoza-Londono Roberto R   Houge Sofia Douzgou SD   Weis Denisa D   Chung Brian Hon-Yin BH   Mak Christopher C Y CCY   Kayserili Hülya H   Elcioglu Nursel N   Aykut Ayca A   Şimşek-Kiper Peli Özlem PÖ   Bögershausen Nina N   Wollnik Bernd B   Bentzen Heidi Beate HB   Kurth Ingo I   Netzer Christian C   Jezela-Stanek Aleksandra A   Devriendt Koen K   Gripp Karen W KW   Mücke Martin M   Verloes Alain A   Schaaf Christian P CP   Nellåker Christoffer C   Solomon Benjamin D BD   Nöthen Markus M MM   Abdalla Ebtesam E   Lyon Gholson J GJ   Krawitz Peter M PM   Hsieh Tzung-Chien TC  

medRxiv : the preprint server for health sciences 20241008


The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatc  ...[more]

Similar Datasets

| S-EPMC5241210 | biostudies-literature
| S-EPMC7840612 | biostudies-literature
| S-EPMC11414844 | biostudies-literature
| S-EPMC8363219 | biostudies-literature
| S-EPMC11389069 | biostudies-literature
2015-05-01 | GSE58431 | GEO
| S-EPMC11823275 | biostudies-literature
| S-EPMC5242437 | biostudies-literature
| S-EPMC5547471 | biostudies-other
2015-05-01 | E-GEOD-58431 | biostudies-arrayexpress