Unknown

Dataset Information

0

Rapid and Quantitative Detection of Lung Cancer Biomarker ENOX2 Using a Novel Aptamer in an Electrochemical DNA-Based (E-DNA) Biosensor.


ABSTRACT: To overcome early cancer detection challenges, diagnostic tools enabling more sensitive, rapid, and noninvasive detection are necessary. An attractive cancer target for diagnostic blood tests is human Ecto-NOX disulfide-thiol exchanger 2 (ENOX2), expressed in most human cancer types and regularly shed into blood sera. Here, we developed an electrochemical DNA-based (E-DNA) biosensor that rapidly detects physiologically relevant levels of ENOX2. To identify ENOX2-binding aptamers that could potentially be used in a biosensor, recombinantly expressed ENOX2 was used as a binding target in an oligonucleotide library pull-down that generated a highly enriched ENOX2-binding aptamer. This candidate aptamer sensitively bound ENOX2 via gel mobility shift assays. To enable this aptamer to function in an ENOX2 E-DNA biosensor, the aptamer sequence was modified to adopt two conformations, one capable of ENOX2 binding, and one with disrupted ENOX2 binding. Upon ENOX2 introduction, a conformational shift to the ENOX2 binding state resulted in changed dynamics of a redox reporter molecule, which generated a rapid, significant, and target-specific electrical current readout change. ENOX2 biosensor sensitivity was at or below the diagnostic range. The ENOX2 E-DNA biosensor design presented here may enable the development of more sensitive, rapid, diagnostic tools for early cancer detection.

SUBMITTER: Quansah M 

PROVIDER: S-EPMC10377175 | biostudies-literature | 2023 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Rapid and Quantitative Detection of Lung Cancer Biomarker ENOX2 Using a Novel Aptamer in an Electrochemical DNA-Based (E-DNA) Biosensor.

Quansah Mary M   Fetter Lisa L   Fineran Autumn A   Colling Haley V HV   Silver Keaton K   Rowland Teisha J TJ   Bonham Andrew J AJ  

Biosensors 20230625 7


To overcome early cancer detection challenges, diagnostic tools enabling more sensitive, rapid, and noninvasive detection are necessary. An attractive cancer target for diagnostic blood tests is human Ecto-NOX disulfide-thiol exchanger 2 (ENOX2), expressed in most human cancer types and regularly shed into blood sera. Here, we developed an electrochemical DNA-based (E-DNA) biosensor that rapidly detects physiologically relevant levels of ENOX2. To identify ENOX2-binding aptamers that could poten  ...[more]

Similar Datasets

| S-EPMC2948235 | biostudies-literature
| S-EPMC11598354 | biostudies-literature
| S-EPMC9822230 | biostudies-literature
| S-EPMC8405239 | biostudies-literature
| S-EPMC10669129 | biostudies-literature
| S-EPMC7586458 | biostudies-literature
| S-EPMC7774066 | biostudies-literature
| S-EPMC7708447 | biostudies-literature
| S-EPMC8453050 | biostudies-literature
| S-EPMC9350589 | biostudies-literature