Unknown

Dataset Information

0

Small Gene Networks Delineate Immune Cell States and Characterize Immunotherapy Response in Melanoma.


ABSTRACT: Single-cell technologies have elucidated mechanisms responsible for immune checkpoint inhibitor (ICI) response, but are not amenable to a clinical diagnostic setting. In contrast, bulk RNA sequencing (RNA-seq) is now routine for research and clinical applications. Our workflow uses transcription factor (TF)-directed coexpression networks (regulons) inferred from single-cell RNA-seq data to deconvolute immune functional states from bulk RNA-seq data. Regulons preserve the phenotypic variation in CD45+ immune cells from metastatic melanoma samples (n = 19, discovery dataset) treated with ICIs, despite reducing dimensionality by >100-fold. Four cell states, termed exhausted T cells, monocyte lineage cells, memory T cells, and B cells were associated with therapy response, and were characterized by differentially active and cell state-specific regulons. Clustering of bulk RNA-seq melanoma samples from four independent studies (n = 209, validation dataset) according to regulon-inferred scores identified four groups with significantly different response outcomes (P < 0.001). An intercellular link was established between exhausted T cells and monocyte lineage cells, whereby their cell numbers were correlated, and exhausted T cells predicted prognosis as a function of monocyte lineage cell number. The ligand-receptor expression analysis suggested that monocyte lineage cells drive exhausted T cells into terminal exhaustion through programs that regulate antigen presentation, chronic inflammation, and negative costimulation. Together, our results demonstrate how regulon-based characterization of cell states provide robust and functionally informative markers that can deconvolve bulk RNA-seq data to identify ICI responders.

SUBMITTER: Egan D 

PROVIDER: S-EPMC10398358 | biostudies-literature | 2023 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications


Single-cell technologies have elucidated mechanisms responsible for immune checkpoint inhibitor (ICI) response, but are not amenable to a clinical diagnostic setting. In contrast, bulk RNA sequencing (RNA-seq) is now routine for research and clinical applications. Our workflow uses transcription factor (TF)-directed coexpression networks (regulons) inferred from single-cell RNA-seq data to deconvolute immune functional states from bulk RNA-seq data. Regulons preserve the phenotypic variation in  ...[more]

Similar Datasets

| S-EPMC9225330 | biostudies-literature
| S-EPMC6641984 | biostudies-literature
| S-EPMC8615556 | biostudies-literature
| S-EPMC11326985 | biostudies-literature
| S-ECPF-GEOD-26383 | biostudies-other
| S-EPMC10937921 | biostudies-literature
| S-EPMC10690163 | biostudies-literature
| S-EPMC10363194 | biostudies-literature
| S-EPMC11226196 | biostudies-literature
| S-EPMC9331037 | biostudies-literature