Unknown

Dataset Information

0

Facile fabrication of boron and nitrogen co-doped carbon dots for "ON-OFF-ON" fluorescence sensing of Al3+ and F- ions in water samples.


ABSTRACT: Water contamination with harmful ions has grown to be a significant environmental issue on a global scale. Therefore, the fabrication of simple, cost-effective, and reliable sensors is essential for identifying these ions. Herein, co-doping of carbon dots with new caffeine and H3BO3-derived boron (B) and nitrogen (N) was performed (BN@CDs). The as-prepared BN@CDs probe was used for the tandem fluorescence sensing of Al3+ and F- based on "ON-OFF-ON" switches. The BN@CDs nanoswitch has a high quantum yield of 44.8% with λexc. and λem. of 360 nm and 440 nm, respectively. The probe exhibited good stability with different pH, ionic-strengths, and irradiation times. The fluorescence emission of BN@CDs was decreased as the Al3+ concentration was increased with a linear range of 0.03-90 μM and a limit of detection (S/N = 3) equal to 9.0 nM. Addition of F- restored the BN@CDs emission as F- ions form a strong and stable complex with Al3+ ions [Al(OH)3F]-. Therefore, the ratio response (F/F°) was raised by raising the F- ion concentration to the range of 0.18-80 μM with a detection limit (S/N = 3) of 50.0 nM. The BN@CDs sensor exhibits some advantages over other reported methods in terms of simplicity, high quantum yield, and low detection limit. Importantly, the sensor was successfully applied to determine Al3+ and F- in various ecological water specimens with accepted results.

SUBMITTER: Alqahtani YS 

PROVIDER: S-EPMC10405784 | biostudies-literature | 2023 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Facile fabrication of boron and nitrogen co-doped carbon dots for "ON-OFF-ON" fluorescence sensing of Al<sup>3+</sup> and F<sup>-</sup> ions in water samples.

Alqahtani Yahya S YS   Mahmoud Ashraf M AM   Mahnashi Mater H MH   Ali Ramadan R   Shahin Reem Y RY   El-Wekil Mohamed M MM   Batakoushy Hany A HA  

RSC advances 20230807 34


Water contamination with harmful ions has grown to be a significant environmental issue on a global scale. Therefore, the fabrication of simple, cost-effective, and reliable sensors is essential for identifying these ions. Herein, co-doping of carbon dots with new caffeine and H<sub>3</sub>BO<sub>3</sub>-derived boron (B) and nitrogen (N) was performed (BN@CDs). The as-prepared BN@CDs probe was used for the tandem fluorescence sensing of Al<sup>3+</sup> and F<sup>-</sup> based on "ON-OFF-ON" swi  ...[more]

Similar Datasets

| S-EPMC9573639 | biostudies-literature
| S-EPMC9316793 | biostudies-literature
| S-EPMC10336645 | biostudies-literature
| S-EPMC9078281 | biostudies-literature
| S-EPMC6835739 | biostudies-literature
| S-EPMC5361154 | biostudies-literature
| S-EPMC11842751 | biostudies-literature
| S-EPMC10068914 | biostudies-literature
| S-EPMC8981073 | biostudies-literature
| S-EPMC9080772 | biostudies-literature