Unknown

Dataset Information

0

The Morphologically Controlled Synthesis and Application of Mesoporous Alumina Spheres.


ABSTRACT: The control of alumina morphology is crucial yet challenging for its various applications. Unfortunately, traditional methods for preparing alumina particles suffer from several limitations such as irregular morphology, poor dispersibility, and restricted application areas. In this study, we develop a novel method for preparing spherical mesoporous alumina using chitin and Pluronic P123 as mixed templates. The effects of reaction temperature, time, and the addition of mixed templates on the phase structure, micromorphology, and optical absorption properties of the samples were investigated. The experimental results indicate that lower temperature and shorter reaction time facilitated the formation of spherical mesoporous alumina with excellent CO2 adsorption capacity. The periodic density functional theory (DFT) calculations demonstrate that both the (110) and (100) surfaces of γ-Al2O3 can strongly adsorb CO2. The difference in the amount of CO2 adsorbed by Al2O3 is mainly due to the different surface areas, which give different numbers of exposed active sites. This approach introduces a novel strategy for utilizing biological compounds to synthesize spherical alumina and greatly enhances mesoporous alumina's application efficiency in adsorption fields. Moreover, this study explored the electrochemical performance of the synthesized product using cyclic voltammetry, and improved loading of electrocatalysts and enhanced electrocatalytic activity were discovered.

SUBMITTER: Xie Y 

PROVIDER: S-EPMC10420170 | biostudies-literature | 2023 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Morphologically Controlled Synthesis and Application of Mesoporous Alumina Spheres.

Xie Yadian Y   Gao Lanxing L   Xue Miaoxuan M   Hou Yanqing Y   Yang Bo B   Zhou Lingyun L   Tong Xin X  

Molecules (Basel, Switzerland) 20230725 15


The control of alumina morphology is crucial yet challenging for its various applications. Unfortunately, traditional methods for preparing alumina particles suffer from several limitations such as irregular morphology, poor dispersibility, and restricted application areas. In this study, we develop a novel method for preparing spherical mesoporous alumina using chitin and Pluronic P123 as mixed templates. The effects of reaction temperature, time, and the addition of mixed templates on the phas  ...[more]

Similar Datasets

| S-EPMC5115414 | biostudies-literature
| S-EPMC9182369 | biostudies-literature
| S-EPMC5448913 | biostudies-other
| S-EPMC9062119 | biostudies-literature
| S-EPMC6644106 | biostudies-literature
| S-EPMC7143451 | biostudies-literature
| S-EPMC6955946 | biostudies-literature
| S-EPMC4846819 | biostudies-literature
| S-EPMC9558603 | biostudies-literature
| S-EPMC3012508 | biostudies-literature