Project description:The data presented in this article are related to the research article entitled as "Targeted deletion of the BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta-thalassemia disease " [1]. BCL11A is a master regulator of γ-globin gene silencing, and suppresses fetal hemoglobin expression by association with other γ-globin suppressors, and also interacts with human beta-globin locus control region as well as intergenic region between the Aγ and δ-globin genes to reconfigure beta-globin cluster. Thus, HbF reactivation has been proposed to be an approach for the treatment of β-thalassemia through knockout of BCL11A. Accordingly, an erythroid enhancer sequence was identified that, when inactivated, led to repression of BCL11A and induction of γ-globin in the erythroid lineage [2-7]. This article describes data that obtained from BCL11A gene enhancer modification in KU812 and KG-1 cell lines using the CRISPR-Cas9 genome editing system in order to reactivate γ-globin gene expression.
Project description:Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements.
Project description:Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA-RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity.
Project description:Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes of DNA base-editors have been described thus far, cytosine base-editors (CBEs) and adenine base-editors (ABEs). Recently, prime-editing (PE) has further expanded the CRISPR-base-edit toolkit to all twelve possible transition and transversion mutations, as well as small insertion or deletion mutations. Safe and efficient delivery of editing systems to target cells is one of the most paramount and challenging components for the therapeutic success of BEs. Due to its broad tropism, well-studied serotypes, and reduced immunogenicity, adeno-associated vector (AAV) has emerged as the leading platform for viral delivery of genome editing agents, including DNA-base-editors. In this review, we describe the development of various base-editors, assess their technical advantages and limitations, and discuss their therapeutic potential to treat debilitating human diseases.
Project description:Tissue-specific gene expression requires coordinated control of gene-proximal and -distal cis-regulatory elements (CREs), yet functional analysis of gene-distal CREs such as enhancers remains challenging. Here we describe CRISPR/dCas9-based enhancer-targeting epigenetic editing systems, enCRISPRa and enCRISPRi, for efficient analysis of enhancer function in situ and in vivo. Using dual effectors capable of re-writing enhancer-associated chromatin modifications, we show that enCRISPRa and enCRISPRi modulate gene transcription by remodeling local epigenetic landscapes at sgRNA-targeted enhancers and associated genes. Comparing with existing methods, the improved systems display more robust perturbations of enhancer activity and gene transcription with minimal off-targets. Allele-specific targeting of enCRISPRa to oncogenic TAL1 super-enhancer modulates TAL1 expression and cancer progression in xenotransplants. Single or multi-loci perturbations of lineage-specific enhancers using an enCRISPRi knock-in mouse establish in vivo evidence for lineage-restricted essentiality of developmental enhancers during hematopoiesis. Hence, enhancer-targeting CRISPR epigenetic editing provides opportunities for interrogating enhancer function in native biological contexts.
Project description:IntroductionThe Vel- phenotype is a rare blood group, and it is challenging for identifying this phenotype due to limited available reagents. Moreover, there are relatively few studies on genomic editing of erythroid antigens and generation of knockout (KO) cell lines at present.MethodsTo identify the high-efficiency small-guiding RNA (sgRNA) sequence, candidate sgRNAs were transfected into HEK 293T cells and analyzed using Sanger sequencing. Following this, the high-efficiency sgRNA was transfected into K562 cells using lentivirus transduction to generate KO Vel blood group gene cells. The expression of the Vel protein was detected using Western blot on single-cell clones. Additionally, flow cytometry was used to detect the erythroid markers CD235a and CD71. Hemoglobin quantification and Giemsa staining were also performed to evaluate the erythroid differentiation of KO clones induced by hemin.ResultsThe high-efficiency sgRNA was successfully obtained and used for CRISPR-Cas9 editing in K562 cells. After limiting dilution and screening, two KO clones had either deleted 2 or 4 bases and showed no expression of the Vel protein. In the hemin-induced KO clone, there was a significant difference in erythroid marker and hemoglobin quantification compared to untreated cells. The morphological changes were also observed for the hemin-induced KO clone.ConclusionIn this study, a highly efficient sgRNA was screened out and used to generate Vel erythroid antigen KO single-cell clones in K562 cells. The edited cells could then be induced to undergo erythroid differentiation with the use of hemin.
Project description:The CRISPR/Cas9 system has emerged as an important tool in biomedical research for a wide range of applications, with significant potential for genome engineering and gene therapy. In order to achieve conditional control of the CRISPR/Cas9 system, a genetically encoded light-activated Cas9 was engineered through the site-specific installation of a caged lysine amino acid. Several potential lysine residues were identified as viable caging sites that can be modified to optically control Cas9 function, as demonstrated through optical activation and deactivation of both exogenous and endogenous gene function.
Project description:The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) gene editing technology, as a revolutionary breakthrough in genetic engineering, offers a promising platform to improve the treatment of various genetic and infectious diseases because of its simple design and powerful ability to edit different loci simultaneously. However, failure to conduct precise gene editing in specific tissues or cells within a certain time may result in undesirable consequences, such as serious off-target effects, representing a critical challenge for the clinical translation of the technology. Recently, some emerging strategies using genetic regulation, chemical and physical strategies to regulate the activity of CRISPR/Cas9 have shown promising results in the improvement of spatiotemporal controllability. Herein, in this review, we first summarize the latest progress of these advanced strategies involving cell-specific promoters, small-molecule activation and inhibition, bioresponsive delivery carriers, and optical/thermal/ultrasonic/magnetic activation. Next, we highlight the advantages and disadvantages of various strategies and discuss their obstacles and limitations in clinical translation. Finally, we propose viewpoints on directions that can be explored to further improve the spatiotemporal operability of CRISPR/Cas9.
Project description:Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the acid β-glucosidase gene (GBA1). Besides causing GD, GBA1 mutations constitute the main genetic risk factor for developing Parkinson's disease. The molecular basis of neurological manifestations in GD remain elusive. However, neuroinflammation has been proposed as a key player in this process. We exploited CRISPR/Cas9 technology to edit GBA1 in the human monocytic THP-1 cell line to develop an isogenic GD model of monocytes and in glioblastoma U87 cell lines to generate an isogenic GD model of glial cells. Both edited (GBA1 mutant) cell lines presented low levels of mutant acid β-glucosidase expression, less than 1% of residual activity and massive accumulation of substrate. Moreover, U87 GBA1 mutant cells showed that the mutant enzyme was retained in the ER and subjected to proteasomal degradation, triggering unfolded protein response (UPR). U87 GBA1 mutant cells displayed an increased production of interleukin-1β, both with and without inflammosome activation, α-syn accumulation and a higher rate of cell death in comparison with wild-type cells. In conclusion, we developed reliable, isogenic, and easy-to-handle cellular models of GD obtained from commercially accessible cells to be employed in GD pathophysiology studies and high-throughput drug screenings.
Project description:PurposeFetal hemoglobin (HbF) upregulation is a mitigating factor in β-hemoglobinopathies therapy like β-thalassemia and sickle cell diseases. Finding molecular mechanisms and the key regulators responsible for globin switching could be helpful to develop effective ways to HbF upregulation. In our prior in silico report, we identified a few factors that are likely to be responsible for globin switching. The goal of this study is to experimentally validate the factors.MethodsWe established K562 cell line with BCL11A knock down leading to increase in HBG1/2 using CRISPR/Cas9 system. Then, using quantitative polymerase chain reaction (qPCR), we determined the expression level of the factors which were previously identified in our prior in silico study.Resultsour analysis showed that BCL11A was substantially knocked down, resulting in the upregulation of HBG1/2 in the BCL11A-ablated K562 cells using CRISPR/Cas9 system. Additionally, the experimental data acquired in this study validated our prior bioinformatics findings about three potentially responsible genes for globin switching, namely HIST1H2Bl, TRIM58, and Al133243.2.ConclusionBCL11A is a promising candidate for the treatment of β-hemoglobinopathies, with high HbF reactivation. In addition, HIST1H2BL, TRIM58 and Al133243.2 are likely to be involved in the mechanism of hemoglobin switching. To further validate the selected genes, more experimental in vivo and in vitro studies are required.