Project description:Pyruvate kinase deficiency (PKD), an autosomal-recessive disorder, is the main cause of chronic non-spherocytic hemolytic anemia. PKD is caused by mutations in the pyruvate kinase, liver and red blood cell (P KLR) gene, which encodes for the erythroid pyruvate kinase protein (RPK). RPK is implicated in the last step of anaerobic glycolysis in red blood cells (RBCs), responsible for the maintenance of normal erythrocyte ATP levels. The only curative treatment for PKD is allogeneic hematopoietic stem and progenitor cell (HSPC) transplant, associated with a significant morbidity and mortality, especially relevant in PKD patients. Here, we address the correction of PKD through precise gene editing at the PKLR endogenous locus to keep the tight regulation of RPK enzyme during erythropoiesis. We combined CRISPR-Cas9 system and donor recombinant adeno-associated vector (rAAV) delivery to build an efficient, safe, and clinically applicable system to knock in therapeutic sequences at the translation start site of the RPK isoform in human hematopoietic progenitors. Edited human hematopoietic progenitors efficiently reconstituted human hematopoiesis in primary and secondary immunodeficient mice. Erythroid cells derived from edited PKD-HSPCs recovered normal ATP levels, demonstrating the restoration of RPK function in PKD erythropoiesis after gene editing. Our gene-editing strategy may represent a lifelong therapy to correct RPK functionality in RBCs for PKD patients.
Project description:BackgroundPyruvate kinase (PK) deficiency is a rare hereditary disorder characterized by chronic hemolytic anemia and serious sequalae which negatively affect patient quality of life. This study aimed to psychometrically validate the first disease-specific patient-reported outcome (PRO) instruments: the 7-item PK Deficiency Diary (PKDD) and 12-item PK Deficiency Impact Assessment (PKDIA), designed to assess signs, symptoms, and impacts of PK deficiency in patients enrolled in the ACTIVATE global phase 3 study of mitapivat versus placebo (NCT03548220).MethodsAll validation analyses for the PKDD and PKDIA were performed on blinded data, with analyses on item integrity, scoring, reliability, and validity conducted on data from screening and baseline. Completion rates and baseline response distributions were characterized using descriptive statistics. Item response modelling was used to inform a weighted scoring system. Reliability was assessed by internal consistency and test-retest reliability; and validity by convergent and known-groups analyses.ResultsOf the 80 adults enrolled, baseline data were available for 77 (96.3%) and 78 (97.5%) patients for the PKDD and PKDIA, respectively. Item responses skewed right, indicating that mean values exceeded median values, especially for items utilizing a 0-10 numeric scale, which were subsequently recoded to a 0-4 scale; 4 items were removed from the PKDIA due to redundancy or low relevance to the trial population. Both the PKDD and PKDIA demonstrated high internal consistency (McDonald's coefficient ω = 0.86 and 0.90, respectively), test-retest reliability (intra-class coefficients of 0.94 and 0.87, respectively), and convergent validity with other PROs (linear correlation coefficients [|r|] between 0.30-0.73 and 0.50-0.82, respectively).ConclusionsThe findings provide evidence of validity and reliability for the PKDD and PKDIA, the first disease-specific PRO measures for PK deficiency, and can therefore increase understanding of, and more accurately capture, the wider impact of PK deficiency on health-related quality of life. Trial registration ClinicalTrials.gov, NCT03548220. Registered June 07, 2018; https://www.Clinicaltrialsgov/ct2/show/NCT03548220 .
Project description:Mitapivat (AG-348) is a novel, first-in-class oral small molecule allosteric activator of the pyruvate kinase enzyme. Mitapivat has been shown to significantly upregulate both wild-type and numerous mutant forms of erythrocyte pyruvate kinase (PKR), increasing adenosine triphosphate (ATP) production and reducing levels of 2,3-diphosphoglycerate. Given this mechanism, mitapivat has been evaluated in clinical trials in a wide range of hereditary hemolytic anemias, including pyruvate kinase deficiency (PKD), sickle cell disease, and the thalassemias. The clinical development of mitapivat in adults with PKD is nearly complete, with the completion of two successful phase III clinical trials demonstrating its safety and efficacy. Given these findings, mitapivat has the potential to be the first approved therapeutic for PKD. Mitapivat has additionally been evaluated in a phase II trial of patients with alpha- and beta-thalassemia and a phase I trial of patients with sickle cell disease, with findings suggesting safety and efficacy in these more common hereditary anemias. Following these successful early-phase trials, two phase III trials of mitapivat in thalassemia and a phase II/III trial of mitapivat in sickle cell disease are beginning worldwide. Promising preclinical studies have additionally been done evaluating mitapivat in hereditary spherocytosis, suggesting potential efficacy in erythrocyte membranopathies as well. With convenient oral dosing and a safety profile comparable with placebo in adults with PKD, mitapivat is a promising new therapeutic for several hereditary hemolytic anemias, including those without any currently US Food and Drug Administration (FDA) or European Medicines Agency (EMA)-approved drug therapies. This review discusses the preclinical studies, pharmacology, and clinical trials of mitapivat.
Project description:Anemia in β-thalassemia is related to ineffective erythropoiesis and reduced red cell survival. Excess free heme and accumulation of unpaired α-globin chains impose substantial oxidative stress on β-thalassemic erythroblasts and erythrocytes, impacting cell metabolism. We hypothesized that increased pyruvate kinase activity induced by mitapivat (AG-348) in the Hbbth3/+ mouse model for β-thalassemia would reduce chronic hemolysis and ineffective erythropoiesis through stimulation of red cell glycolytic metabolism. Oral mitapivat administration ameliorated ineffective erythropoiesis and anemia in Hbbth3/+ mice. Increased ATP, reduced reactive oxygen species production, and reduced markers of mitochondrial dysfunction associated with improved mitochondrial clearance suggested enhanced metabolism following mitapivat administration in β-thalassemia. The amelioration of responsiveness to erythropoietin resulted in reduced soluble erythroferrone, increased liver Hamp expression, and diminished liver iron overload. Mitapivat reduced duodenal Dmt1 expression potentially by activating the pyruvate kinase M2-HIF2α axis, representing a mechanism additional to Hamp in controlling iron absorption and preventing β-thalassemia-related liver iron overload. In ex vivo studies on erythroid precursors from patients with β-thalassemia, mitapivat enhanced erythropoiesis, promoted erythroid maturation, and decreased apoptosis. Overall, pyruvate kinase activation as a treatment modality for β-thalassemia in preclinical model systems had multiple beneficial effects in the erythropoietic compartment and beyond, providing a strong scientific basis for further clinical trials.
Project description:Pyruvate kinase deficiency (PKD) is the most common enzyme defect of glycolysis and an important cause of hereditary, nonspherocytic hemolytic anemia. The disease has a worldwide geographical distribution but there are no verified data regarding its frequency. Difficulties in the diagnostic workflow and interpretation of PK enzyme assay likely play a role. By the creation of a global PKD International Working Group in 2016, involving 24 experts from 20 Centers of Expertise we studied the current gaps in the diagnosis of PKD in order to establish diagnostic guidelines. By means of a detailed survey and subsequent discussions, multiple aspects of the diagnosis of PKD were evaluated and discussed by members of Expert Centers from Europe, USA, and Asia directly involved in diagnosis. Broad consensus was reached among the Centers on many clinical and technical aspects of the diagnosis of PKD. The results of this study are here presented as recommendations for the diagnosis of PKD and used to prepare a diagnostic algorithm. This information might be helpful for other Centers to deliver timely and appropriate diagnosis and to increase awareness in PKD.
Project description:Red cell pyruvate kinase (PK) deficiency is the most common glycolytic defect associated with congenital non-spherocytic hemolytic anemia. The disease, transmitted as an autosomal recessive trait, is caused by mutations in the PKLR gene and is characterized by molecular and clinical heterogeneity; anemia ranges from mild or fully compensated hemolysis to life-threatening forms necessitating neonatal exchange transfusions and/or subsequent regular transfusion support; complications include gallstones, pulmonary hypertension, extramedullary hematopoiesis and iron overload. Since identification of the first pathogenic variants responsible for PK deficiency in 1991, more than 300 different variants have been reported, and the study of molecular mechanisms and the existence of genotype-phenotype correlations have been investigated in-depth. In recent years, during which progress in genetic analysis, next-generation sequencing technologies and personalized medicine have opened up important landscapes for diagnosis and study of molecular mechanisms of congenital hemolytic anemias, genotyping has become a prerequisite for accessing new treatments and for evaluating disease state and progression. This review examines the extensive molecular heterogeneity of PK deficiency, focusing on the diagnostic impact of genotypes and new acquisitions on pathogenic non-canonical variants. The recent progress and the weakness in understanding the genotype-phenotype correlation, and its practical usefulness in light of new therapeutic opportunities for PK deficiency are also discussed.
Project description:Pyruvate kinase deficiency (PKD) is a rare autosomal recessive disorder caused by mutations in the PKLR gene. PKD is characterized by non-spherocytic hemolytic anemia of variable severity and may be fatal in some cases during early childhood. Although not considered the standard of care, allogeneic stem cell transplantation has been shown as a potentially curative treatment, limited by donor availability, toxicity, and incomplete engraftment. Preclinical studies were conducted to define conditions to enable consistent therapeutic reversal, which were based on our previous data on lentiviral gene therapy for PKD. Improvement of erythroid parameters was identified by the presence of 20%-30% healthy donor cells. A minimum vector copy number (VCN) of 0.2-0.3 was required to correct PKD when corrected cells were transplanted in a mouse model for PKD. Biodistribution and pharmacokinetics studies, with the aim of conducting a global gene therapy clinical trial for PKD patients (RP-L301-0119), demonstrated that genetically corrected cells do not confer additional side effects. Moreover, a clinically compatible transduction protocol with mobilized peripheral blood CD34+ cells was optimized, thus facilitating the efficient transduction on human cells capable of repopulating the hematopoiesis of immunodeficient mice. We established conditions for a curative lentiviral vector gene therapy protocol for PKD.