Project description:Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-based knockout screening is revolting the genetic analysis of a cellular or molecular phenotype in question but is challenged by the large size of single-guide RNA (sgRNA) library. Here we designed a minimal genome-wide human sgRNA library, H-mLib, which is composed of 21,159 sgRNA pairs assembled based on a dedicated selection strategy from all potential SpCas9/sgRNAs in the human genome. These sgRNA pairs were cloned into a dual-gRNA vector each targeting one gene, resulting in a compact library size nearly identical to the number of human protein-coding genes. The performance of the H-mLib was benchmarked to other CRISPR libraries in a proliferation screening conducted in K562 cells. We also identified groups of core essential genes and cell-type specific essential genes by comparing the screening results from the K562 and Jurkat cells. Together, the H-mLib exemplified high specificity and sensitivity in identifying essential genes while containing minimal library complexity, emphasizing its advantages and applications in CRISPR screening with limited cell numbers.
Project description:To minimize the human genome-wide CRISPR/Cas9 library size, we established H-mLib which recruited a novel sgRNA design method and applied with dual plasmid based strategy. The performance of the H-mLib was benchmarked to other CRISPR libraries in a proliferation screening conducted in K562 cells. We also identified human core essential genes and cell-type specific essentials genes in K562 and Jurkat cells.
Project description:CRISPR guide RNA libraries have been iteratively improved to provide increasingly efficient reagents, although their large size is a barrier for many applications. We design an optimised minimal genome-wide human CRISPR-Cas9 library (MinLibCas9) by mining existing large-scale gene loss-of-function datasets, resulting in a greater than 42% reduction in size compared to other CRISPR-Cas9 libraries while preserving assay sensitivity and specificity. MinLibCas9 provides backward compatibility with existing datasets, increases the dynamic range of CRISPR-Cas9 screens and extends their application to complex models and assays.
Project description:Clustered regularly interspaced short palindromic repeats (CRISPR) in conjunction with CRISPR-associated proteins (Cas) can be employed to introduce double stand breaks into mammalian genomes at user-defined loci. The endonuclease activity of the Cas complex can be targeted to a specific genomic region using a single guide RNA (sgRNA). We developed a ligation-independent cloning (LIC) assembly method for efficient and bias-free generation of large sgRNA libraries. Using this system, we performed an iterative shotgun cloning approach to generate an arrayed sgRNA library that targets one critical exon of almost every protein-coding human gene. An orthogonal mixing and deconvolution approach was used to obtain 19,506 unique sequence-validated sgRNAs (91.4% coverage). As tested in HEK 293T cells, constructs of this library have a median genome editing activity of 54.6% and employing sgRNAs of this library to generate knockout cells was successful for 19 out of 19 genes tested.
Project description:Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Project description:Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.