Ontology highlight
ABSTRACT:
SUBMITTER: Aja-Fernandez S
PROVIDER: S-EPMC10440596 | biostudies-literature | 2023 Jul
REPOSITORIES: biostudies-literature
Aja-Fernández Santiago S Martín-Martín Carmen C Planchuelo-Gómez Álvaro Á Faiyaz Abrar A Uddin Md Nasir MN Schifitto Giovanni G Tiwari Abhishek A Shigwan Saurabh J SJ Kumar Singh Rajeev R Zheng Tianshu T Cao Zuozhen Z Wu Dan D Blumberg Stefano B SB Sen Snigdha S Goodwin-Allcock Tobias T Slator Paddy J PJ Yigit Avci Mehmet M Li Zihan Z Bilgic Berkin B Tian Qiyuan Q Wang Xinyi X Tang Zihao Z Cabezas Mariano M Rauland Amelie A Merhof Dorit D Manzano Maria Renata R Campos Vinícius Paraníba VP Santini Tales T da Costa Vieira Marcelo Andrade MA HashemizadehKolowri SeyyedKazem S DiBella Edward E Peng Chenxu C Shen Zhimin Z Chen Zan Z Ullah Irfan I Mani Merry M Abdolmotalleby Hesam H Eckstrom Samuel S Baete Steven H SH Filipiak Patryk P Dong Tanxin T Fan Qiuyun Q de Luis-García Rodrigo R Tristán-Vega Antonio A Pieciak Tomasz T
NeuroImage. Clinical 20230728
The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically betw ...[more]