Unknown

Dataset Information

0

Efficient SNN multi-cores MAC array acceleration on SpiNNaker 2.


ABSTRACT: The potential low-energy feature of the spiking neural network (SNN) engages the attention of the AI community. Only CPU-involved SNN processing inevitably results in an inherently long temporal span in the cases of large models and massive datasets. This study introduces the MAC array, a parallel architecture on each processing element (PE) of SpiNNaker 2, into the computational process of SNN inference. Based on the work of single-core optimization algorithms, we investigate the parallel acceleration algorithms for collaborating with multi-core MAC arrays. The proposed Echelon Reorder model information densification algorithm, along with the adapted multi-core two-stage splitting and authorization deployment strategies, achieves efficient spatio-temporal load balancing and optimization performance. We evaluate the performance by benchmarking a wide range of constructed SNN models to research on the influence degree of different factors. We also benchmark with two actual SNN models (the gesture recognition model of the real-world application and balanced random cortex-like network from neuroscience) on the neuromorphic multi-core hardware SpiNNaker 2. The echelon optimization algorithm with mixed processors realizes 74.28% and 85.78% memory footprint of the original MAC calculation on these two models, respectively. The execution time of echelon algorithms using only MAC or mixed processors accounts for ≤ 24.56% of the serial ARM baseline. Accelerating SNN inference with algorithms in this study is essentially the general sparse matrix-matrix multiplication (SpGEMM) problem. This article explicitly expands the application field of the SpGEMM issue to SNN, developing novel SpGEMM optimization algorithms fitting the SNN feature and MAC array.

SUBMITTER: Huang J 

PROVIDER: S-EPMC10440698 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient SNN multi-cores MAC array acceleration on SpiNNaker 2.

Huang Jiaxin J   Kelber Florian F   Vogginger Bernhard B   Liu Chen C   Kreutz Felix F   Gerhards Pascal P   Scholz Daniel D   Knobloch Klaus K   Mayr Christian G CG  

Frontiers in neuroscience 20230807


The potential low-energy feature of the spiking neural network (SNN) engages the attention of the AI community. Only CPU-involved SNN processing inevitably results in an inherently long temporal span in the cases of large models and massive datasets. This study introduces the MAC array, a parallel architecture on each processing element (PE) of SpiNNaker 2, into the computational process of SNN inference. Based on the work of single-core optimization algorithms, we investigate the parallel accel  ...[more]

Similar Datasets

| S-EPMC10719842 | biostudies-literature
| S-EPMC7250910 | biostudies-literature
| S-EPMC6020755 | biostudies-literature
| S-EPMC11186751 | biostudies-literature
| S-EPMC9025538 | biostudies-literature
| S-EPMC6999728 | biostudies-literature
| S-EPMC10558485 | biostudies-literature
| S-EPMC4642758 | biostudies-literature
| S-EPMC6444189 | biostudies-literature
| S-EPMC6888851 | biostudies-literature