Project description:BackgroundThe efficacy and safety of impregnated central venous catheters (CVCs) in pediatrics remain controversial. The purpose of this study was to evaluate the efficacy of impregnations for the prevention of catheter-related bloodstream infection (CRBSI).MethodsWe searched the following five electronic databases: Medline, PubMed, Cochrane, Embase, and the Web of Science for randomized controlled trials (RCTs) up to March 2021. Pooled risk ratios (RRs) with 95% confidence intervals (CIs) were calculated using a fixed-effects model. Assessment of publication biases was evaluated by Egger's test. Heterogeneity between studies was assessed based on the chi-square test and I 2 statistics, and sensitivity analysis and subgroup analysis were also performed.ResultsA total of six RCTs with 3,091 patients were included. Impregnated CVCs provided significant benefits in reducing the risk of CRBSI (RR = 0.41, 95% CI: 0.26-0.66) in pediatric patients, especially in the pediatric group. No publication bias was observed in the Egger test for the risk of CRBSI. Drug type is a source of heterogeneity.ConclusionAntimicrobial-impregnated CVCs are beneficial to prevent CVC-related complications in pediatrics.
Project description:PurposeThe CATheter infections in CHildren (CATCH) trial reported reduced risks of bloodstream infection with antibiotic impregnated compared with heparin-bonded or standard central venous catheters (CVC) in paediatric intensive care. CVC impregnation did not increase the risk of thrombosis which was recorded in 24% of participants. This post-hoc analysis determines the effect of CVC impregnation on the risk of thrombosis leading to CVC removal or swollen limb.MethodsWe analysed patients in the CATCH trial, blind to CVC allocation, to define clinically relevant thrombosis based on the clinical sign most frequently recorded in patients where the CVC was removed because of concerns regarding thrombosis. In post-hoc, three-way comparisons of antibiotic, heparin and standard CVCs, we determined the effect of CVC type on time to clinically relevant thrombosis, using Cox proportional hazards regression.ResultsOf 1409 participants with a successful CVC insertion, the sign most frequently resulting in CVC removal was swollen limb (37.6%; 41/109), with lower rates of removal of CVC following 2 episodes of difficulty withdrawing blood or of flushing to unblock the CVC. In intention to treat analyses (n = 1485), clinically relevant thrombosis, defined by 1 or more record of swollen limb or CVC removal due to concerns about thrombosis, was recorded in 11.9% (58/486) of antibiotic CVCs, 12.1% (60/497) of heparin CVCs, and 10.2% (51/502) of standard CVCs. We found no differences in time to clinically relevant thrombosis according to type of CVC.ConclusionsWe found no evidence for an increased risk of clinically relevant thrombosis in antibiotic impregnated compared to heparin-bonded or standard CVCs in children receiving intensive care.
Project description:IntroductionCatheter use is associated with many complications and is an iatrogenic source of morbidity and mortality in intensive care units (ICU). The catheter being studied (Certofix Protect) was developed to reduce the risk of catheter related infections. This clinical trial will compare the safety and efficiency of Certofix Protect with that of an ordinary Certofix catheter.Methods and analysisIn this multicentre trial, we will randomly assigned dual lumen central venous catheterisation (≥5 ds) in patients in the adult ICU to the antimicrobial central venous catheter (CVC) group or the ordinary CVC group. We plan to recruit 12-16 medical centres in China. Our main objective is to assess the effectiveness of antimicrobial CVCs in reducing catheter related bloodstream infection (CRBSI), all cause mortality, catheter colonisation, catheter related thrombosis and other catheter related complications. The primary outcome is the incidence of CRBSI.Ethics and disseminationThe ethics committee of West China Hospital of Sichuan University has granted ethics approval for this study (27 January 2015). The results will be published in peer reviewed journals and presented at conferences.Trial registration numberNCT02645682.
Project description:BackgroundWe determined the generalisability and cost-impact of adopting antibiotic-impregnated CVCs in all paediatric intensive care units (PICUs) in England, based on results from a large randomised controlled trial (the CATCH trial; ISRCTN34884569).MethodsBSI rates using standard CVCs were estimated through linkage of national PICU audit data (PICANet) with laboratory surveillance data. We estimated the number of BSI averted if PICUs switched from standard to antibiotic-impregnated CVCs by applying the CATCH trial rate-ratio (0.40; 95% CI 0.17,0.97) to the BSI rate using standard CVCs. The value of healthcare resources made available by averting one BSI as estimated from the trial economic analysis was £10,975; 95% CI -£2,801,£24,751.ResultsThe BSI rate using standard CVCs was 4.58 (95% CI 4.42,4.74) per 1000 CVC-days in 2012. Applying the rate-ratio gave 232 BSI averted using antibiotic CVCs. The additional cost of purchasing antibiotic-impregnated compared with standard CVCs was £36 for each child, corresponding to additional costs of £317,916 for an estimated 8831 CVCs required in PICUs in 2012. Based on 2012 BSI rates, management of BSI in PICUs cost £2.5 million annually (95% uncertainty interval: -£160,986, £5,603,005). The additional cost of antibiotic CVCs would be less than the value of resources associated with managing BSI in PICUs with standard BSI rates >1.2 per 1000 CVC-days.ConclusionsThe cost of introducing antibiotic-impregnated CVCs is less than the cost associated with managing BSIs occurring with standard CVCs. The long-term benefits of preventing BSI could mean that antibiotic CVCs are cost-effective even in PICUs with extremely low BSI rates.
Project description:ObjectivesWe aimed to compare the success rates and other catheter-related parameters between peripherally inserted central catheters (PICCs) and non-tunnelled ultrasound-guided central venous catheters (USG-CVCs) including femoral, jugular, brachiocephalic and subclavian lines.DesignThis was a retrospective observational study.SettingThe study was performed in a level III neonatal intensive care unit (NICU) in Qatar, as a single-site study.ParticipantsThis study included 1333 neonates who required CVC insertion in the NICU from January 2016 to December 2018. Of those, we had 1264 PICCs and 69 non-tunnelled USG-CVCs.Outcome measuresThe success rate and other catheter-related complications in the two groups.ResultsThe overall success rate was 88.4% in the USG-CVCs (61/69) compared with 90% in the PICCs (1137/1264) group (p=0.68). However, the first prick success rate was 69.4% in USG-CVCs (43/69) compared with 63.6% in the PICCs (796/1264) group. Leaking and central line-associated blood stream infection (CLABSI) were significantly higher in the USG-CVC group compared with the PICC group (leaking 16.4% vs 2.3%, p=0.0001) (CLABSI 8.2% vs 3.1%, p=0.03). CLABSI rates in the PICC group were 1.75 per 1000 catheter days in 2016 and 3.3 in 2017 compared with 6.91 in 2016 (p=0.0001) and 14.32 in 2017 (p=0.0001) for the USG-CVCs. USG-CVCs had to be removed due to catheter-related complications in 52.5% of the cases compared with 29.9% in PICCs, p=0.001. In 2018, we did not have any non-tunnelled USG-CVCs insertions in our NICU.ConclusionsThe overall complication rate, CLABSI and leaking are significantly higher in non-tunnelled USG-CVCs compared with the PICCs. However, randomised controlled trials with larger sample sizes are desired. Proper central venous device selection and timing, early PICC insertion and early removal approach, dedicated vascular access team development, proper central venous line maintenance, central line simulation workshops and US-guided insertions are crucial elements for patient safety in NICU.
Project description:Central venous access is increasingly becoming the domain of the radiologist, both in terms of the insertion of central venous catheters (CVCs) and in the subsequent management of these lines. This article seeks to provide an overview of the CVC types available for paediatric patients and a more detailed explanation of the spectrum of complications that may lead to catheter malfunction. A standard catheter contrast study or 'linogram' technique is described. The normal appearances of such a study and a detailed pictorial review of abnormal catheter studies are provided, together with a brief overview of how information from catheter investigations can guide the management of catheter complications.
Project description:Central venous catheters remain a vital option for access for patients receiving maintenance hemodialysis. There are many important and evolving clinical and regulatory considerations for all stakeholders for these devices. Innovation and transparent and comprehensive regulatory review of these devices is essential to stimulate innovation to help promote better outcomes for patients receiving maintenance hemodialysis. A workgroup that included representatives from academia, industry, and the US Food and Drug Administration was convened to identify the major design considerations and clinical and regulatory challenges of central venous catheters for hemodialysis. Our intent is to foster improved understanding of these devices and provide the foundation for strategies to foster innovation of these devices.
Project description:Blood stream infection (BSI) is a potentially lethal complication in patients receiving extracorporeal membrane oxygenation (ECMO). It may be particularly common in patients with veno-venous ECMO due to their long hospitalization in the intensive care unit. Given that these patients have concurrent indwelling central venous catheters (CVC), it is unclear whether the ECMO circuit, CVC, or both, contribute to BSI. This study evaluated the risk factors associated with BSI in patients receiving veno-venous ECMO in a single institution study of 61 patients from 2016 through 2019. All ECMO catheters and the circuit oxygenator fluid were aseptically collected and analyzed for microorganisms at the time of decannulation. New BSI was diagnosed in 15 (24.6%) patients and increased mortality by threefold. None of the ECMO catheters or oxygenator fluid were culture positive. BSI increased with CVC use of over 8 days and was significantly lowered when CVC were exchanged by day 8 compared with patients with exchanges at later points (15.0% vs. 42.8%, p = 0.02). Median length of CVC use in the BSI-negative and BSI-positive group were 6.3 ± 5.0 and 9.4 ± 5.1, respectively (p = 0.04). In summary, BSI is a potentially lethal complication in patients receiving ECMO. Indwelling CVC, not the ECMO circuitry, is the likely contributor for BSI, and exchanging CVC by day 8 can reduce the incidence of BSI.