Project description:Animal color signals may function as indicators of fighting ability when males compete for access to females. This allows opponents to settle aggressive interactions before they escalate into physical combat and injury. Thus, there may be strong directional selection on these traits, toward enhanced signal quality. This renders sexually selected traits particularly susceptible to inbreeding depression, due to relatively low ratios of additive genetic variance to dominance variance. We measured the effects of inbreeding on an intrasexually selected color signal (the badge) in a population of Swedish sand lizards (Lacerta agilis) using the Rhh software based on 17 to 21 microsatellites. Males of this sexually dichromatic species use the badge during aggressive interactions to display, and assess, fighting ability. We found negative effects of homozygosity on badge size, saturation, and brightness. However, no such effects were observed on color hue. Pairwise correlations between badge size, hue, and saturation were all statistically significant. Thus, the sand lizard "badge" is a multicomponent signal with variation explained by covariation in badge size, saturation, and color hue. Body mass corrected for skeletal size (body condition) positively predicted badge size and saturation, encouraging future research on the extent that sexual signals may convey information on multigene targets (i.e. "genic capture").
Project description:Inbreeding depression plays a major role in shaping mating systems: in particular, inbreeding avoidance is often proposed as a mechanism explaining extra-pair reproduction in socially monogamous species. This suggestion relies on assumptions that are rarely comprehensively tested: that inbreeding depression is present, that higher kinship between social partners increases infidelity, and that infidelity reduces the frequency of inbreeding. Here, we test these assumptions using 26 years of data for a cooperatively breeding, socially monogamous bird with high female infidelity, the superb fairy-wren (Malurus cyaneus). Although inbred individuals were rare (?6% of offspring), we found evidence of inbreeding depression in nestling mass (but not in fledgling survival). Mother-son social pairings resulted in 100% infidelity, but kinship between a social pair did not otherwise predict female infidelity. Nevertheless, extra-pair offspring were less likely to be inbred than within-pair offspring. Finally, the social environment (the number of helpers in a group) did not affect offspring inbreeding coefficients or inbreeding depression levels. In conclusion, despite some agreement with the assumptions that are necessary for inbreeding avoidance to drive infidelity, the apparent scarcity of inbreeding events and the observed levels of inbreeding depression seem insufficient to explain the ubiquitous infidelity in this system, beyond the mother-son mating avoidance.
Project description:The fitness consequences of inbreeding and the individual behaviors that prevent its detrimental effects can be challenging to document in wild populations. Here, we use field and molecular data from a 17-year study of banner-tailed kangaroo rats (Dipodomys spectabilis) to quantify the relationship between inbreeding, mate kinship, and lifetime reproductive success. Using a pedigree that was reconstructed using genetic and field data within a Bayesian framework (median probability of parental assignment = 0.92, mean pedigree depth = 6 generations), we estimated both inbreeding coefficients and kinship between individuals that produced offspring (mean inbreeding coefficient = 0.07, mean mate kinship = 0.08). We also used the pedigree, in combination with census data, to generate a series of fitness estimates, ranging from survival to reproductive maturity to lifetime reproductive success. We found that the population's inbreeding load was low to moderate (0.98-4.66 haploid lethal equivalents) and increased with the time frame over which fitness was estimated (lowest for survival to maturity, highest for adult-to-adult reproductive success). Fitness decreased with increasing inbreeding coefficients. For example, lifetime reproductive success was reduced by 24% for individuals with inbreeding coefficients greater than twice the population mean. Within full sibling pairs, the sibling with less-related mates produced an average of 30% more offspring over its lifetime. These data further illustrate that inbreeding can have a negative effect on lifetime reproductive success.
Project description:In the domestication and breeding of tree species that suffer from inbreeding depression (ID), the long-term performance of different breeding strategies is poorly known. Therefore, seven tree breeding strategies including single population, subline, selfing, and nucleus breeding were simulated using a multi-locus model with additive, partial, and complete dominance allele effects, and with intermediate, U-shaped, and major allele distributions. The strategies were compared for genetic gain, inbreeding accumulation, capacity to show ID, the frequencies and fixations of unfavorable alleles, and genetic variances in breeding and production populations. Measured by genetic gain of production population, the nucleus breeding and the single breeding population with mass selection strategies were equal or superior to subline and single breeding population with within-family selection strategies in all simulated scenarios, in spite of their higher inbreeding coefficients. Inbreeding and cross-breeding effectively decreased ID and could in some scenarios produce genetic gains during the first few generations. However, in all scenarios, considerable fixation of unfavorable alleles rendered the purging performance of selfing and cross-breeding strategies ineffective, and resulted in substantial inferiority in comparison to the other strategies in the long-term.
Project description:Inbreeding is often avoided in natural populations by passive processes such as sex-biased dispersal. But, in many social animals, opposite-sexed adult relatives are spatially clustered, generating a risk of incest and hence selection for active inbreeding avoidance. Here we show that, in long-tailed tits (Aegithalos caudatus), a cooperative breeder that risks inbreeding by living alongside opposite-sex relatives, inbreeding carries fitness costs and is avoided by active kin discrimination during mate choice. First, we identified a positive association between heterozygosity and fitness, indicating that inbreeding is costly. We then compared relatedness within breeding pairs to that expected under multiple mate-choice models, finding that pair relatedness is consistent with avoidance of first-order kin as partners. Finally, we show that the similarity of vocal cues offers a plausible mechanism for discrimination against first-order kin during mate choice. Long-tailed tits are known to discriminate between the calls of close kin and nonkin, and they favor first-order kin in cooperative contexts, so we conclude that long-tailed tits use the same kin discrimination rule to avoid inbreeding as they do to direct help toward kin.
Project description:One problem in modern dogs is a high occurrence of physical diseases, defects and disorders. Many breeds exhibit physical problems that affect individual dogs throughout life. A potential cause of these problems is inbreeding that is known to reduce the viability of individuals. We investigated the possible correlation between recent inbreeding and health problems in dogs and used studbook data from 26 breeds provided by the Swedish Kennel Club for this purpose. The pedigrees date back to the mid-20th century and comprise 5-10 generations and 1 000-50 000 individuals per pedigree over our study period of 1980-2010. We compared levels of inbreeding and loss of genetic variation measured in relation to the number of founding animals during this period in the investigated dog breeds that we classified as 'healthy' (11 breeds) or 'unhealthy' (15) based on statistics on the extent of veterinary care obtained from Sweden's four largest insurance companies for pets. We found extensive loss of genetic variation and moderate levels of recent inbreeding in all breeds examined, but no strong indication of a difference in these parameters between healthy versus unhealthy breeds over this period. Thus, recent breeding history with respect to rate of inbreeding does not appear to be a main cause of poor health in the investigated dog breeds in Sweden. We identified both strengths and weaknesses of the dog pedigree data important to consider in future work of monitoring and conserving genetic diversity of dog breeds.
Project description:Sexual selection on fitness-determining traits should theoretically erode genetic variance and lead to low heritability. However, many sexually selected traits maintain significant phenotypic and additive genetic variance, with explanations for this "lek paradox" including genic capture due to condition-dependence, and breaks on directional selection due to environmental sources of variance including maternal effects. Here we investigate genetic and environmental sources of variance in the intrasexually selected green badge of the sand lizard (Lacerta agilis). The badge functions as a cue to male fighting ability in this species, and male-male interactions determine mate acquisition. Using animal models on a pedigree including three generations of males measured over an extensive 9-year field study, we partition phenotypic variance in both badge size and body condition into additive genetic, maternal, and permanent environmental effects experienced by an individual over its lifespan. Heritability of badge size was 0.33 with a significant estimate of underlying additive genetic variance. Body condition was strongly environmentally determined in this species and did not show either significant additive genetic variance or heritability. Neither badge size nor body condition was responsive to maternal effects. We propose that the lack of additive genetic variance and heritability of body condition makes it unlikely that genic capture mechanisms maintain additive genetic variance for badge size. That said, genic capture was originally proposed for male traits under female choice, not agonistic selection. If developmental pathways generating variance in body condition, and/or the covarying secondary sex trait, differ between inter- and intrasexual selection, or the rate at which their additive genetic variance or covariance is depleted, future work may show whether genic capture is largely restricted to intersexual selection processes.
Project description:BackgroundSocial genetic effects (SGE) are the effects of the genotype of one animal on the phenotypes of other animals within a social group. Because SGE contribute to variation in economically important traits for pigs, the inclusion of SGE in statistical models could increase responses to selection (RS) in breeding programs. In such models, increasing the relatedness of members within groups further increases RS when using pedigree-based relationships; however, this has not been demonstrated with genomic-based relationships or with a constraint on inbreeding. In this study, we compared the use of statistical models with and without SGE and compared groups composed at random versus groups composed of families in genomic selection breeding programs with a constraint on the rate of inbreeding.ResultsWhen SGE were of a moderate magnitude, inclusion of SGE in the statistical model substantially increased RS when SGE were considered for selection. However, when SGE were included in the model but not considered for selection, the increase in RS and in accuracy of predicted direct genetic effects (DGE) depended on the correlation between SGE and DGE. When SGE were of a low magnitude, inclusion of SGE in the model did not increase RS, probably because of the poor separation of effects and convergence issues of the algorithms. Compared to a random group composition design, groups composed of families led to higher RS. The difference in RS between the two group compositions was slightly reduced when using genomic-based compared to pedigree-based relationships.ConclusionsThe use of a statistical model that includes SGE can substantially improve response to selection at a fixed rate of inbreeding, because it allows the heritable variation from SGE to be accounted for and capitalized on. Compared to having random groups, family groups result in greater response to selection in the presence of SGE but the advantage of using family groups decreases when genomic-based relationships are used.