Ontology highlight
ABSTRACT: Introduction
Preference and plasticity in nitrogen (N) form uptake are the main strategies with which plants absorb soil N. However, little effort has been made to explore effects of N form acquisition strategies, especially the plasticity, on invasiveness of exotic plants, although many studies have determined the effects of N levels (e.g. N deposition).Methods
To address this problem, we studied the differences in N form acquisition strategies between the invasive plant Solidago canadensis and its co-occurring native plant Artemisia lavandulaefolia, effects of soil N environments, and the relationship between N form acquisition strategy of S. canadensis and its invasiveness using a 15N-labeling technique in three habitats at four field sites.Results
Total biomass, root biomass, and the uptakes of soil dissolved inorganic N (DIN) per quadrat were higher for the invasive relative to the native species in all three habitats. The invader always preferred dominant soil N forms: NH4 + in habitats with NH4 + as the dominant DIN and NO3 - in habitats with NO3 - as the dominant DIN, while A. lavandulaefolia consistently preferred NO3 - in all habitats. Plasticity in N form uptake was higher in the invasive relative to the native species, especially in the farmland. Plant N form acquisition strategy was influenced by both DIN levels and the proportions of different N forms (NO3 -/NH4 +) as judged by their negative effects on the proportional contributions of NH4 + to plant N (f NH4 +) and the preference for NH4 + (β NH4 +). In addition, total biomass was positively associated with f NH4 + or β NH4 + for S. canadensis, while negatively for A. lavandulaefolia. Interestingly, the species may prefer to absorb NH4 + when soil DIN and/or NO3 -/NH4 + ratio were low, and root to shoot ratio may be affected by plant nutrient status per se, rather than by soil nutrient availability.Discussion
Our results indicate that the superior N form acquisition strategy of the invader contributes to its higher N uptake, and therefore to its invasiveness in different habitats, improving our understanding of invasiveness of exotic plants in diverse habitats in terms of utilization of different N forms.
SUBMITTER: Guan M
PROVIDER: S-EPMC10475947 | biostudies-literature | 2023
REPOSITORIES: biostudies-literature
Frontiers in plant science 20230821
<h4>Introduction</h4>Preference and plasticity in nitrogen (N) form uptake are the main strategies with which plants absorb soil N. However, little effort has been made to explore effects of N form acquisition strategies, especially the plasticity, on invasiveness of exotic plants, although many studies have determined the effects of N levels (e.g. N deposition).<h4>Methods</h4>To address this problem, we studied the differences in N form acquisition strategies between the invasive plant <i>Soli ...[more]