Unknown

Dataset Information

0

Tmem161a regulates bone formation and bone strength through the P38 MAPK pathway.


ABSTRACT: Bone remodeling is an extraordinarily complex process involving a variety of factors, such as genetic, metabolic, and environmental components. Although genetic factors play a particularly important role, many have not been identified. In this study, we investigated the role of transmembrane 161a (Tmem161a) in bone structure and function using wild-type (WT) and Tmem161a-depleted (Tmem161aGT/GT) mice. Mice femurs were examined by histological, morphological, and bone strength analyses. Osteoblast differentiation and mineral deposition were examined in Tmem161a-overexpressed, -knockdown and -knockout MC3T3-e1 cells. In WT mice, Tmem161a was expressed in osteoblasts of femurs; however, it was depleted in Tmem161aGT/GT mice. Cortical bone mineral density, thickness, and bone strength were significantly increased in Tmem161aGT/GT mice femurs. In MC3T3-e1 cells, decreased expression of alkaline phosphatase (ALP) and Osterix were found in Tmem161a overexpression, and these findings were reversed in Tmem161a-knockdown or -knockout cells. Microarray and western blot analyses revealed upregulation of the P38 MAPK pathway in Tmem161a-knockout cells, which referred as stress-activated protein kinases. ALP and flow cytometry analyses revealed that Tmem161a-knockout cells were resistant to oxidative stress. In summary, Tmem161a is an important regulator of P38 MAPK signaling, and depletion of Tmem161a induces thicker and stronger bones in mice.

SUBMITTER: Nagai T 

PROVIDER: S-EPMC10480474 | biostudies-literature | 2023 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications


Bone remodeling is an extraordinarily complex process involving a variety of factors, such as genetic, metabolic, and environmental components. Although genetic factors play a particularly important role, many have not been identified. In this study, we investigated the role of transmembrane 161a (Tmem161a) in bone structure and function using wild-type (WT) and Tmem161a-depleted (Tmem161a<sup>GT/GT</sup>) mice. Mice femurs were examined by histological, morphological, and bone strength analyses  ...[more]

Similar Datasets

2023-03-27 | GSE227961 | GEO
| PRJNA947585 | ENA
| S-EPMC6999712 | biostudies-literature
| S-EPMC6255782 | biostudies-literature
| S-EPMC2579379 | biostudies-literature
| S-EPMC9156783 | biostudies-literature
| S-EPMC8554345 | biostudies-literature
| S-EPMC4158574 | biostudies-literature
| S-EPMC8076678 | biostudies-literature
| S-EPMC8837385 | biostudies-literature