Project description:BackgroundForests play an important role in mitigating global climate change by capturing and sequestering atmospheric carbon. Quantitative estimation of the temporal and spatial pattern of carbon storage in forest ecosystems is critical for formulating forest management policies to combat climate change. This study explored the effects of land cover change on carbon stock dynamics in the Wujig Mahgo Waren forest, a dry Afromontane forest that covers an area of 17,000 ha in northern Ethiopia.ResultsThe total carbon stocks of the Wujig Mahgo Waren forest ecosystems estimated using a multi-disciplinary approach that combined remote sensing with a ground survey were 1951, 1999, and 1955 GgC in 1985, 2000 and 2016 years respectively. The mean carbon stocks in the dense forests, open forests, grasslands, cultivated lands and bare lands were estimated at 181.78 ± 27.06, 104.83 ± 12.35, 108.77 ± 6.77, 76.54 ± 7.84 and 83.11 ± 8.53 MgC ha-1 respectively. The aboveground vegetation parameters (tree density, DBH and height) explain 59% of the variance in soil organic carbon.ConclusionsThe obtained estimates of mean carbon stocks in ecosystems representing the major land cover types are of importance in the development of forest management plan aimed at enhancing mitigation potential of dry Afromontane forests in northern Ethiopia.
Project description:BACKGROUND:Developing land management scenarios that have the potential to sequester carbon and reduce greenhouse gasses (GHG) emission on a sustainable basis entails quantifying the current carbon stock under different land uses. In light of this, a study was conducted in Hades sub-watershed, eastern Ethiopia, to explore the carbon stock under four major land uses: natural forest, coffee agroforestry, grazing land and cropland, involving samples from four carbon pools: aboveground, belowground, litter, and soil. To this end, vegetation and soil samples were collected from the respective land uses following recommended procedures. RESULTS:The results indicate that organic carbon concentration decreased with soil depth though substantial amount of carbon was found in the lower soil depths under land use with woody perennials. The mean total organic carbon stock ranged from 138.95 t ha-1 in the cropland to 496.26 t ha-1 in the natural forest. The soil organic carbon stock was found to be relatively higher than that of the vegetation carbon stock in the natural forest and coffee agroforestry land uses. CONCLUSION:This study highlights the importance of assessing watershed level carbon stock for better and carbon friendly land use decision making. Land uses with woody perennials have high carbon stock than those without. Hence, conservation-based production systems with inclusion of woody perennials are options suggested to enhance carbon sequestration in the sub watershed.
Project description:Ethiopian Orthodox churches are significant habitats for endemic and threatened plant species, yet their vegetation status and the land use systems impacting them, are little known. Therefore, this study assessed the land use and land cover changes (LULCC) within a 3 km buffer area and the woody vegetation status of the Tsimur Gebriel Monastery in the Tigray region, Northern Ethiopia. The United States Geological Survey's multi-dated (1986, 1999, and 2018) Landsat imagery was used for LULCC analysis. A supervised classification technique was employed for image classification using a maximum likelihood algorithm. Systematic sampling techniques were used to collect vegetation data (tree species, height, and DBH), using 20 sample plots (20 × 20 m) distanced 100 m apart. The results highlighted that among the five identified LULCC types in the buffer zone of the monastery, the farmland area has expanded from 56 to 78 % at the expense of shrublands between 1986 and 2018. At the monastery, 19 woody tree species from 13 families were identified, with an evenness of 0.5 and a Shannon diversity index of 2.4. The stem density was 336 stems per hectare, and the forest cover was approximately 65 %. Olea europaea was the dominant tree species, while Juniperus procera showed a lack of regeneration at the monastery. Despite the fair natural regeneration, the monastery exhibited lower species diversity, richness, and evenness. However, the monastery remains an important habitat for rare and threatened tree species and may supply seeds for the restoration of degraded lands. Therefore, establishing exclosures in the buffer zone, strengthening stone walls and enrichment planting of degraded tree species should be implemented to ensure the sustainable conservation of valuable tree species.
Project description:BackgroundInvestigating the land use and land cover (LULC) dynamics and the status of traditional agroforestry practices provide important data for policymakers. The main objective of this study was to assess the LULC dynamics and traditional agroforestry practices among smallholder farmers across the two agro-ecological zones in Wonchi District of Ethiopia.MethodsLandsat images were acquired from Earth Explorer, and changes in LULC were quantified with three Landsat sensors in the three time-series (1985, 2001, and 2019). Supervised classification with maximum likelihood technique was employed using ERDAS Imagine and ArcGIS. A ground survey was conducted with 100 key informants who were selected from 10 sites using a purposive sampling method. The collected data were subjected to direct matrix ranking, use-value analysis of most important multipurpose plant species, and semi-structured interviews were conducted for qualitative analysis.ResultsIn total, 103 agroforestry plant species belonging to 44 families were identified in Wonchi District, of which 74 were indigenous including seven endemic and 29 exotic species. The highest species (13) were recorded in the Fabaceae family. About 61% of species were reported in the midland agro-ecological zone. A mixed farming system was the most frequently (56%) reported source of income. The results of LULC changes from 1985 to 2019 showed that the agroforestry cover increased from 31.1% to 34.9% and settlement including road construction increased from 12.5% to 31.6% of the total area with an annual rate change of 0.3% and 2.7%, respectively. These changes corresponded with a decreasing trend of the forest, cropland, water body, and shrub at a rate of 4.7%, 1.3%, 0.8%, and 0.5%, respectively. The LULC changes were more pronounced in the highlands than in the midlands of Wonchi District. Expansion of settlement and tenure policy change are the main drivers for these changes in the area. The authors recommended that protecting and planting indigenous and multipurpose plant species is essential as restoration techniques for all degraded land-use types. Therefore, strengthening agroforestry practices and land-use planning is urgently needed for achieving multiple goals.
Project description:Resprouting multi-stemmed woody plants form an important component of the woody vegetation in many ecosystems, but a clear methodology for reliable measurement of their size and quick, non-destructive estimation of their woody biomass and carbon stock is lacking. Our goal was to find a minimum number of sprouts, i.e., the most easily obtainable, and sprout parameters that should be measured for accurate sprout biomass and carbon stock estimates. Using data for 5 common temperate woody species, we modelled carbon stock and sprout biomass as a function of an increasing number of sprouts in an interaction with different sprout parameters. The mean basal diameter of only two to five of the thickest sprouts and the basal diameter and DBH of the thickest sprouts per stump proved to be accurate estimators for the total sprout biomass of the individual resprouters and the populations of resprouters, respectively. Carbon stock estimates were strongly correlated with biomass estimates, but relative carbon content varied among species. Our study demonstrated that the size of the resprouters can be easily measured, and their biomass and carbon stock estimated; therefore, resprouters can be simply incorporated into studies of woody vegetation.
Project description:Agroforestry is increasingly being identified as an integrated land use enhancing plant diversity while reducing habitat loss and fragmentation. This paper examined species diversity, composition, structure and management in agroforestry systems. Two Kebeles (Kachabira and Mesafe) were purposively selected for this study. Then, farmers who dominantly practiced agroforestry practices such as home garden, parkland and live fence were stratified based on wealth categories. Ten percent of the sample households were randomly selected from each wealth category. Accordingly, a total of 83 households were selected. Inventories of plant species were done by sampling one plot of each farm management type. A total of 59 plant species, belonging to 56 genera and 36 families were recorded across the home gardens, parklands and live fences in the study area. Among the plant species, trees constituted 42%, shrubs 27%, herbs 29% and climber 2%. From recorded plant species, 66% were native and the remainders 34% were introduced species. From the native species recorded in this study, Lippia adoensis and Millettia ferruginea were endemic to Ethiopia. The mean Shannon diversity index of rich, medium and poor households in the three different agroforestry practices were 1.75, 1.57 and 1.62 in home garden, 0.36, 0.30 and 0.49 in parkland and 0.84, 0.99 and 1.00 in live fence respectively. The largest tree basal area was recorded in the live fence (14.7 m2ha-1), followed by home garden and parkland. The study revealed that agroforestry plays an important role in the conservation of biodiversity, and also by providing food, income and a wide range of other products such as fuel wood, construction material, fodder, spices and medicinal plants. Farm household landholding size, species preference and management found to be the most important influencing factors that affect the diversity of plant species. Further detailed study of explicit examining of the factors such as socio-ecological effects that determine species diversity and the contribution of different functional groups to livelihood is needed to fully understand the agroforestry system.
Project description:There are growing efforts to incorporate agroforestry into ecosystem service incentive programs. Indigenous and other place-based multi-strata agroforestry systems are important conservation and agricultural strategies, yet their ecosystem services, including carbon sequestration benefits, have received little research attention. To fill this gap, we draw on interviews with agroforestry practitioners and ecosystem service modeling in Hawai'i to: (1) create future scenarios of where fallow unmanaged agricultural and non-native dominated conservation lands could be transitioned to multi-strata agroforestry under current and future climates; and (2) quantify the potential above-ground carbon and soil carbon benefits and tradeoffs of transitions across these scenarios. We found that about half of unmanaged fallow agricultural lands, representing >1,500 km2 , was suitable for agroforestry transitions under current rainfall and over a third, representing >1,200 km2, remained suitable under a dry climate change scenario, RCP 8.5 mid-century. Mean above-ground carbon in modeled agroforestry systems was estimated to be 92-125 Mg C ha-1 (337-458 Mg CO2 ha-1) with ~75% of the potential restoration area projected to significantly increase above-ground carbon storage. Considering both above-ground and soil carbon, overall carbon benefits are expected across over a third of the potential restoration area with just 5% of the area with expected overall losses. These results provide evidence for potential carbon hotspots for agroforestry transitions, as well as to the need for further study of soil carbon changes with multi-strata agroforestry transitions across varying climates and soil types. With potential carbon sequestration similar to or greater than that of native forest restoration, restoration through agroforestry represents an important pathway to achieving carbon benefits through multi-benefit forest-agricultural systems on large areas of unmanaged agricultural lands, offering a pathway to support inclusive and effective natural climate solutions.
Project description:There are limited reports about the impacts of long-term cropping and land-use systems (CLUS) on soil properties and nutrient stocks under smallholder farmers' conditions in developing countries. The objective of this research was to examine variation in soil properties and OC and TN stocks across the different CLUS in Dura sub-catchment, northern Ethiopia. Surveys and discussions on field history were used to identify nine CLUS, namely, tef (Eragrostis tef (Zucc) Trot)) mono-cropping (TM), maize (Zea mays L.) mono-cropping (MM), cauliflower (Brassica oleracea var. botrytis)-maize intercropping (IC1), red beet (Beta Vulgaris)-maize intercropping (IC2), cauliflower-tef-maize rotation (R1), onion (Allium cepa L.)-maize-onion rotation (R2), tr eated gully (TG), untreated gully (UTG), and natural forest system (NF). A total of 27 composite soil samples were randomly collected from the CLUS for soil analysis. Data were subjected to one-way analysis of variance and PCA. The lowest and highest bulk density was determined from NF (1.19 Mg m-3) and UTG (1.77 Mg m-3), respectively. Soil pH, EC and CEC varied significantly among the CLUS. The highest CEC (50.3 cmolc kg-1) was reported under TG followed by NF. The highest soil OC stock (175.3 Mg C ha-1) and TN stock (13.6 Mg C ha-1) were found from NF. The PCA chosen soil properties explained 87% of the soil quality variability among the CLUS. Such soil properties and nutrient stocks variability among the CLUS suggested that introduction of suitable management practices that sustain the soil system of the CLUS with poor soil properties and nutrient stocks are crucial for the study area conditions.
Project description:Agroforestry systems help to mitigate climate change by storing carbon in biomass, soils and products. The potential of various homegarden agroforestry (HGAF) practices as a carbon sink in reference to HGAF and household characters has not been adequately studied. Therefore, this study empirically assessed the effects of HGAF practices, HGAF size, HGAF age, and household wealth status on carbon stock accumulation in southeastern Ethiopia. Perennial plant inventory data, litter and soil samples were collected from 96 HGAF farms (48 traditional and 48 improved), consisting of 200 sample plots with a plot size of 20 m × 20 m. A total of 288 soil samples were collected from depths of 0-30 cm and 30-60 cm to analyze the spatial and vertical distribution of carbon. The results indicated that biomass carbon in improved HGAF practice was about 11.8 % higher than in traditional ones. Old age HGAF had 8.7 % and 49.4 % significantly higher biomass carbon than medium and young age HGAF, respectively. Soil organic carbon varied significantly based on HGAF practices, HGAF size, HGAF age and household wealth status (p < 0.05). The mean ecosystem carbon stock of traditional HGAF was by 17.2 % higher than that of improved practices. Our results revealed that the potential carbon stocks of the HGAF ecosystem depend on the types of HGAF, household wealth and soil depth. Thus, HGAF should be managed as a viable land use option to help mitigate climate change, while also offering food and income opportunities for smallholder farmers in the studied region and beyond.