Project description:Working memory training has been a hot topic over the last decade. Although studies show benefits in trained and untrained tasks as a function of training, there is an ongoing debate on the efficacy of working memory training. There have been numerous meta-analyses put forth to the field, some finding overall broad transfer effects while others do not. However, discussion of this research typically overlooks specific qualities of the training and transfer tasks. As such, there has been next to no discussion in the literature on what training and transfer tasks features are likely to mediate training outcomes. To address this gap, here, we characterized the broad diversity of features employed in N-back training tasks and outcome measures in published working memory training studies. Extant meta-analyses have not taken into account the diversity of methodology at this level, primarily because there are too few studies using common methods to allow for a robust meta-analysis. We suggest that these limitations preclude strong conclusions from published data. In order to advance research on working memory training, and in particular, N-back training, more studies are needed that systematically compare training features and use common outcome measures to assess transfer effects.
Project description:We applied detrended fluctuation analysis, power spectral density, and eigenanalysis of detrended cross-correlations to investigate fMRI data representing a diurnal variation of working memory in four visual tasks: two verbal and two nonverbal. We show that the degree of fractal scaling is regionally dependent on the engagement in cognitive tasks. A particularly apparent difference was found between memorisation in verbal and nonverbal tasks. Furthermore, the detrended cross-correlations between brain areas were predominantly indicative of differences between resting state and other tasks, between memorisation and retrieval, and between verbal and nonverbal tasks. The fractal and spectral analyses presented in our study are consistent with previous research related to visuospatial and verbal information processing, working memory (encoding and retrieval), and executive functions, but they were found to be more sensitive than Pearson correlations and showed the potential to obtain other subtler results. We conclude that regionally dependent cognitive task engagement can be distinguished based on the fractal characteristics of BOLD signals and their detrended cross-correlation structure.
Project description:Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback.
Project description:Working memory (WM) is a critical cognitive function allowing recent information to be temporarily held in mind to inform future action. This process depends on coordination between prefrontal cortex (PFC) subregions and other connected brain areas. However, few studies have examined the degree of functional specialization between these subregions throughout WM using electrophysiological recordings in freely-moving mice. Here we record single-units in three neighboring mouse medial PFC (mPFC) subregions-supplementary motor area (MOs), dorsomedial PFC (dmPFC), and ventromedial (vmPFC)-during a freely-behaving non-match-to-position WM task. The MOs is most active around task phase transitions, when it transiently represents the starting sample location. Dorsomedial PFC contains a stable population code, including persistent sample-location-specific firing during the delay period. Ventromedial PFC responds most strongly to reward-related information during choices. Our results reveal subregionally segregated WM computation in mPFC and motivate more precise consideration of the dynamic neural activity required for WM.
Project description:People with high working memory (WM) capacity tend to respond proactively and experience a decrease in undesired emotions, implying the potential influence of WM training on emotional responses. Although training emotional WM could enhance emotional control, the training also improves emotional response itself. Thus, the far-transfer effects of non-emotional WM training on emotional responses remain an open question. In the present study, two experiments were conducted to detect these effects. The Preliminary experiment matched the expectations of the gains of the training tasks between the experimental and active control groups (n = 33). In Experiments 1 and 2, participants performed 7-day and 15-day training procedures, respectively. Results indicated that after a 7-day training, non-emotional WM training (n = 17) marginally reduced individuals' emotional responses compared with the active control group (n = 18); importantly, this improvement became significant after a 15-day training (n (WM training) = 20, n (active control) = 18). A combination analysis for Experiments 1 and 2 showed that training gains on WM performance were significantly related to reduced emotional responses (r = -0.359), indicating a dosage effect. Therefore, non-emotional WM training provides a safe and effective way to enhance adaptive emotional responses.
Project description:ObjectiveChildren with ADHD demonstrate impaired performance on a wide range of neuropsychological tests. It is unclear, however, whether ADHD is associated with many neurocognitive deficits or whether a small number of impairment(s) broadly influence test performance. The current study tests competing model predictions regarding two candidate causal mechanisms in ADHD: information processing speed and working memory.MethodA well-characterized sample of 86 children (Mage = 10.52, SDage = 1.54; 34 girls; 64% Caucasian/Non-Hispanic) with ADHD (n = 45) and without ADHD (n = 41) completed eight fully crossed experimental tasks that systematically manipulated working memory (BF₁₀ = 1.80 × 10⁹³) and information processing speed (drift rate; BF₁₀ = 7.61 × 10⁶).ResultsBayesian mixed-model ANOVAs indicated that increasing working memory demands produced significant reductions in information processing speed (drift rate; BF₁₀ = 5.82 × 10⁹⁶). In contrast, experimentally reducing children's information processing speed did not significantly change their working memory performance (BF₁₀ = 1.31). ADHD status interacted with the working memory manipulation, such that the ADHD and non-ADHD groups showed equivalently high accuracy under the encoding-only conditions (BF₀₁ = 3.45) but differed significantly under high working memory conditions (encoding + recall; BF₁₀ = 19.58). Importantly, however, ADHD status failed to interact with (a) the working memory manipulation to differentially affect information processing speed and (b) the information processing speed manipulation to differentially affect working memory performance (all BF₀₁ > 4.25).ConclusionsThese findings indicate that top-down executive control exerts significant effects on children's ability to quickly process information, but that working memory deficits and slowed information processing speed appear to be relatively independent impairments in ADHD. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Project description:Neural oscillations are thought to reflect low-level operations that can be used for higher-level cognitive functions. Here, we investigated the role of brain rhythms in the 1-30 Hz range by recording MEG in human participants performing a visual delayed match-to-sample paradigm in which orientation or spatial frequency of sample and probe gratings had to be matched. A cue occurring before or after sample presentation indicated the to-be-matched feature. We demonstrate that alpha/beta power decrease tracks the presentation of the informative cue and indexes faster responses. Moreover, these faster responses coincided with an augmented phase alignment of slow oscillations, as well as phase-amplitude coupling between slow and fast oscillations. Importantly, stimulus decodability was boosted by both low alpha power and high beta power. In summary, we provide support for a comprehensive framework in which different rhythms play specific roles: slow rhythms control input sampling, while alpha (and beta) gates the information flow, beta recruits task-relevant circuits, and the timing of faster oscillations is controlled by slower ones.
Project description:Investigations of working memory capacity in the visual domain have converged on the concept of a limited supply of a representational medium, flexibly distributed between objects. Current debate centers on whether this medium is continuous, or quantized into 2 or 3 memory "slots". The latter model makes the strong prediction that, if an item in memory is probed, behavioral parameters will plateau when the number of items is the same or more than the number of slots. Here we examine short-term memory for object location using a two-dimensional pointing task. We show that recall variability for items in memory increases monotonically from 1 to 8 items. Using a novel method to isolate only those trials on which a participant correctly identifies the target, we show that response latency also increases monotonically from 1 to 8 items. We argue that both these findings are incompatible with a quantized model.
Project description:Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.
Project description:It is unclear how different types of cortical projection neurons work together to support diverse cortical functions. We examined the discharge characteristics and inactivation effects of intratelencephalic (IT) and pyramidal tract (PT) neurons-two major types of cortical excitatory neurons that project to cortical and subcortical structures, respectively-in the deep layer of the medial prefrontal cortex in mice performing a delayed response task. We found stronger target-dependent firing of IT than PT neurons during the delay period. We also found the inactivation of IT neurons, but not PT neurons, impairs behavioral performance. In contrast, PT neurons carry more temporal information than IT neurons during the delay period. Our results indicate a division of labor between IT and PT projection neurons in the prefrontal cortex for the maintenance of working memory and for tracking the passage of time, respectively.