Unknown

Dataset Information

0

Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing.


ABSTRACT: Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.

SUBMITTER: Xie M 

PROVIDER: S-EPMC10485062 | biostudies-literature | 2023 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing.

Xie Mingjuan M   Ma Xiaofei X   Wang Yuangang Y   Li Chaofan C   Shi Haiyang H   Yuan Xiuliang X   Hellwich Olaf O   Chen Chunbo C   Zhang Wenqiang W   Zhang Chen C   Ling Qing Q   Gao Ruixiang R   Zhang Yu Y   Ochege Friday Uchenna FU   Frankl Amaury A   De Maeyer Philippe P   Buchmann Nina N   Feigenwinter Iris I   Olesen Jørgen E JE   Juszczak Radoslaw R   Jacotot Adrien A   Korrensalo Aino A   Pitacco Andrea A   Varlagin Andrej A   Shekhar Ankit A   Lohila Annalea A   Carrara Arnaud A   Brut Aurore A   Kruijt Bart B   Loubet Benjamin B   Heinesch Bernard B   Chojnicki Bogdan B   Helfter Carole C   Vincke Caroline C   Shao Changliang C   Bernhofer Christian C   Brümmer Christian C   Wille Christian C   Tuittila Eeva-Stiina ES   Nemitz Eiko E   Meggio Franco F   Dong Gang G   Lanigan Gary G   Niedrist Georg G   Wohlfahrt Georg G   Zhou Guoyi G   Goded Ignacio I   Gruenwald Thomas T   Olejnik Janusz J   Jansen Joachim J   Neirynck Johan J   Tuovinen Juha-Pekka JP   Zhang Junhui J   Klumpp Katja K   Pilegaard Kim K   Šigut Ladislav L   Klemedtsson Leif L   Tezza Luca L   Hörtnagl Lukas L   Urbaniak Marek M   Roland Marilyn M   Schmidt Marius M   Sutton Mark A MA   Hehn Markus M   Saunders Matthew M   Mauder Matthias M   Aurela Mika M   Korkiakoski Mika M   Du Mingyuan M   Vendrame Nadia N   Kowalska Natalia N   Leahy Paul G PG   Alekseychik Pavel P   Shi Peili P   Weslien Per P   Chen Shiping S   Fares Silvano S   Friborg Thomas T   Tallec Tiphaine T   Kato Tomomichi T   Sachs Torsten T   Maximov Trofim T   di Cella Umberto Morra UM   Moderow Uta U   Li Yingnian Y   He Yongtao Y   Kosugi Yoshiko Y   Luo Geping G  

Scientific data 20230907 1


Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R<sup>2</sup>), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian  ...[more]

Similar Datasets

| S-EPMC6849852 | biostudies-literature
| S-EPMC9586934 | biostudies-literature
| S-EPMC7518252 | biostudies-literature
| S-EPMC11015412 | biostudies-literature
| S-EPMC10404296 | biostudies-literature
| S-EPMC3994508 | biostudies-other
| S-EPMC9826164 | biostudies-literature
| S-EPMC8153014 | biostudies-literature
| S-EPMC6219417 | biostudies-literature
| S-EPMC6513895 | biostudies-literature