Project description:Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the Permian Basin, which is among the world's most prolific oil-producing regions and accounts for >30% of total U.S. oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a-1, representing the largest methane flux ever reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates a high-resolution satellite data-based atmospheric inversion framework, providing a robust top-down analytical tool for quantifying and evaluating subregional methane emissions.
Project description:Eighty percent of US oil and natural gas (O&G) production sites are low production well sites, with average site-level production ≤15 barrels of oil equivalent per day and producing only 6% of the nation's O&G output in 2019. Here, we integrate national site-level O&G production data and previously reported site-level CH4 measurement data (n = 240) and find that low production well sites are a disproportionately large source of US O&G well site CH4 emissions, emitting more than 4 (95% confidence interval: 3-6) teragrams, 50% more than the total CH4 emissions from the Permian Basin, one of the world's largest O&G producing regions. We estimate low production well sites represent roughly half (37-75%) of all O&G well site CH4 emissions, and a production-normalized CH4 loss rate of more than 10%-a factor of 6-12 times higher than the mean CH4 loss rate of 1.5% for all O&G well sites in the US. Our work suggests that achieving significant reductions in O&G CH4 emissions will require mitigation of emissions from low production well sites.
Project description:Cold heavy oil production with sand (CHOPS) is an extraction process for heavy oil in Canada, with the potential to lead to higher CH4 venting than conventional oil sites, that have not been adequately characterized. In order to quantify CH4 emissions from CHOPS activities, a focused aerial measurement campaign was conducted in the Canadian provinces of Alberta and Saskatchewan in June 2018. Total CH4 emissions from each of 10 clusters of CHOPS wells (containing 22-167 well sites per cluster) were derived using a mass balance computation algorithm that uses in situ wind data measurement on board aircraft. Results show that there is no statistically significant difference in CH4 emissions from CHOPS wells between the two provinces. Cluster-aggregated emission factors (EF) were determined using correspondingly aggregated production volumes. The average CH4 EF was 70.4 ± 36.9 kg/m3 produced oil for the Alberta wells and 55.1 ± 13.7 kg/m3 produced oil for the Saskatchewan wells. Using these EF and heavy oil production volumes reported to provincial regulators, the annual CH4 emissions from CHOPS were estimated to be 121% larger than CHOPS emissions extracted from Canada's National Inventory Report (NIR) for Saskatchewan. The EF were found to be positively correlated with the percentage of nonpiped production volumes in each cluster, indicating higher emissions for nonpiped wells while suggesting an avenue for methane emission reductions. A comparison with recent measurements indicates relatively limited effectiveness of regulations for Saskatchewan compared to those in Alberta. The results of this study indicate the substantial contribution of CHOPS operations to the underreporting observed in the NIR and provide measurement-based EF that can be used to develop improved emissions inventories for this sector and mitigate CH4 emissions from CHOPS operations.
Project description:Methane (CH4) emissions from oil and natural gas (O&NG) systems are an important contributor to greenhouse gas emissions. In the United States, recent synthesis studies of field measurements of CH4 emissions at different spatial scales are ~1.5-2× greater compared to official greenhouse gas inventory (GHGI) estimates, with the production-segment as the dominant contributor to this divergence. Based on an updated synthesis of measurements from component-level field studies, we develop a new inventory-based model for CH4 emissions, for the production-segment only, that agrees within error with recent syntheses of site-level field studies and allows for isolation of equipment-level contributions. We find that unintentional emissions from liquid storage tanks and other equipment leaks are the largest contributors to divergence with the GHGI. If our proposed method were adopted in the United States and other jurisdictions, inventory estimates could better guide CH4 mitigation policy priorities.
Project description:Natural methane (CH4) emissions from aquatic ecosystems may rise because of human-induced climate warming, although the magnitude of increase is highly uncertain. Using an exceptionally large CH4 flux dataset (~19,000 chamber measurements) and remotely sensed information, we modeled plot- and landscape-scale wetland CH4 emissions from the Prairie Pothole Region (PPR), North America's largest wetland complex. Plot-scale CH4 emissions were driven by hydrology, temperature, vegetation, and wetland size. Historically, landscape-scale PPR wetland CH4 emissions were largely dependent on total wetland extent. However, regardless of future wetland extent, PPR CH4 emissions are predicted to increase by two- or threefold by 2100 under moderate or severe warming scenarios, respectively. Our findings suggest that international efforts to decrease atmospheric CH4 concentrations should jointly account for anthropogenic and natural emissions to maintain climate mitigation targets to the end of the century.
Project description:Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency's Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.
Project description:Natural gas vehicles (NGVs) have been promoted in China to mitigate air pollution, yet our measurements and analyses show that NGV growth in China may have significant negative impacts on climate change. We conducted real-world vehicle emission measurements in China and found high methane emissions from heavy-duty NGVs (90% higher than current emission limits). These emissions have been ignored in previous emission estimates, leading to biased results. Applying our observations to life-cycle analyses, we found that switching to NGVs from conventional vehicles in China has led to a net increase in greenhouse gas (GHG) emissions since 2000. With scenario analyses, we also show that the next decade will be critical for China to reverse the trend with the upcoming China VI standard for heavy-duty vehicles. Implementing and enforcing the China VI standard is challenging, and the method demonstrated here can provide critical information regarding the fleet-level CH4 emissions from NGVs.
Project description:Reduction of fossil fuel-related methane emissions has been identified as an essential means for climate change mitigation, but emission source identification remains elusive for most oil and gas production basins in the world. We combine three complementary satellite data sets to survey single methane emission sources on the west coast of Turkmenistan, one of the largest methane hotspots in the world. We found 29 different emitters, with emission rates >1800 kg/h, active in the 2017-2020 time period, although older satellite data show that this type of emission has been occurring for decades. We find that all sources are linked to extraction fields mainly dedicated to crude oil production, where 24 of them are inactive flares venting gas. The analysis of time series suggests a causal relationship between the decrease in flaring and the increase in venting. At the regional level, 2020 shows a substantial increase in the number of methane plume detections concerning previous years. Our results suggest that these large venting point sources represent a key mitigation opportunity as they emanate from human-controlled facilities, and that new satellite methods promise a revolution in the detection and monitoring of methane point emissions worldwide.
Project description:Methane is a substantial contributor to climate change. It also contributes to maintaining the background levels of tropospheric ozone. Among a variety of CH4 sources, current estimates suggest that CH4 emissions from oil and gas processes account for approximately 20% of worldwide anthropogenic emissions. Here, we report on observational evidence of CH4 emissions from offshore oil and gas platforms in Southeast Asia, detected by a highly time-resolved spectroscopic monitoring technique deployed onboard cargo ships of opportunity. We often encountered CH4 plumes originating from operational flaring/venting and fugitive emissions off the coast of the Malay Peninsula and Borneo. Using night-light imagery from satellites, we discovered more offshore platforms in this region than are accounted for in the emission inventory. Our results demonstrate that current knowledge regarding CH4 emissions from offshore platforms in Southeast Asia has considerable uncertainty and therefore, emission inventories used for modeling and assessment need to be re-examined.
Project description:Headwater streams are natural sources of methane but are suffering severe anthropogenic disturbance, particularly land use change and climate warming. The widespread intensification of agriculture since the 1940s has increased the export of fine sediments from land to streams, but systematic assessment of their effects on stream methane is lacking. Here we show that excess fine sediment delivery is widespread in UK streams (n = 236) and, set against a pre-1940s baseline, has markedly increased streambed organic matter (23 to 100 g m-2), amplified streambed methane production and ultimately tripled methane emissions (0.2 to 0.7 mmol CH4 m-2 d-1, n = 29). While streambed methane production responds strongly to organic matter, we estimate the effect of the approximate 0.7 °C of warming since the 1940s to be comparatively modest. By separating natural from human enhanced methane emissions we highlight how catchment management targeting the delivery of excess fine sediment could mitigate stream methane emissions by some 70%.