Project description:Bananas (Musa spp.) are one of the world's most important fruit crops and play a vital role in food security for many developing countries. Most banana cultivars are triploids derived from inter- and intraspecific hybridizations between the wild diploid ancestor species Musa acuminate (AA) and M. balbisiana (BB). We report two haplotype-resolved genome assemblies of the representative AAB-cultivated types, Plantain and Silk, and precisely characterize ancestral contributions by examining ancestry mosaics across the genome. Widespread asymmetric evolution is observed in their subgenomes, which can be linked to frequent homologous exchange events. We reveal the genetic makeup of triploid banana cultivars and verify that subgenome B is a rich source of disease resistance genes. Only 58.5% and 59.4% of Plantain and Silk genes, respectively, are present in all three haplotypes, with >50% of genes being differentially expressed alleles in different subgenomes. We observed that the number of upregulated genes in Plantain is significantly higher than that in Silk at one-week post-inoculation with Fusarium wilt tropical race 4 (Foc TR4), which confirms that Plantain can initiate defense responses faster than Silk. Additionally, we compared genomic and transcriptomic differences among the genes related to carotenoid synthesis and starch metabolism between Plantain and Silk. Our study provides resources for better understanding the genomic architecture of cultivated bananas and has important implications for Musa genetics and breeding.
Project description:Agrocybe chaxingu is a widely cultivated edible fungus in China, which is rich in nutrients and medicinal compounds. However, the lack of a high-quality genome hinders further research. In this study, we assembled the telomere-to-telomere genomes of two sexually compatible monokaryons (CchA and CchB) derived from a primarily cultivated strain AS-5. The genomes of CchA and CchB were 50.60 Mb and 51.66 Mb with contig N50 values of 3.95 Mb and 3.97 Mb, respectively. Each contained 13 complete chromosomes with telomeres at both ends. The high mapping rate, uniform genome coverage, high LAI score, all BUSCOs with 98.5%, and all base accuracy exceeding 99.999% indicated the high level of integrity and quality of these two assembled genomes. Comparison of the two genomes revealed that approximately 30% of the nucleotide sequences between homologous chromosomes were non-syntenic, including 19 translocations, 36 inversions, and 15 duplications. An additional gene CchA_000467 was identified at the Mat A locus of CchA, which was observed exclusively in the Cyclocybe cylindracea species complex. A total of 613 (4.26%) and 483 (3.4%) unique genes were identified in CchA and CchB, respectively, with over 80% of these being hypothetical proteins. Transcriptomic analysis revealed that the expression levels of unique genes in CchB were significantly higher than those in CchA, and both CchA and CchB had unique genes specifically expressed at stages of mycelium and fruiting body. It was indicated that the growth and development of the A. chaxingu strain AS-5 required the coordinated action of two different nuclei, with CchB potentially playing a more significant role. These findings contributed to a more profound comprehension of the growth and developmental processes of basidiomycetes.
Project description:Actinidia eriantha is a characteristic fruit tree featuring with great potential for its abundant vitamin C and strong disease resistance. It has been used in a wide range of breeding programs and functional genomics studies. Previously published genome assemblies of A. eriantha are quite fragmented and not highly contiguous. Using multiple sequencing strategies, we get the haplotype-resolved and gap-free genomes of an elite breeding line "Midao 31" (MD), termed MDHAPA and MDHAPB. The new assemblies anchored to 29 pseudochromosome pairs with a length of 619.3 Mb and 611.7 Mb, as well as resolved 27 and 28 gap-close chromosomes in a telomere-to-telomere (T2T) manner. Based on the haplotype-resolved genome, we found that most alleles experienced purifying selection and coordinately expressed. Owing to the high continuity of assemblies, we defined the centromeric regions of A. eriantha, and identified the major repeating monomer, which is designated as Ae-CEN153. This resource lays a solid foundation for further functional genomics study and horticultural traits improvement in kiwifruit.
Project description:Banana cultivars (Musa ssp.) are diploid, triploid and tetraploid hybrids derived from Musa acuminata and Musa balbisiana. We presented a high-quality draft genome assembly of M. balbisiana with 430 Mb (87%) assembled into 11 chromosomes. We identified that the recent divergence of M. acuminata (A-genome) and M. balbisiana (B-genome) occurred after lineage-specific whole-genome duplication, and that the B-genome may be more sensitive to the fractionation process compared to the A-genome. Homoeologous exchanges occurred frequently between A- and B-subgenomes in allopolyploids. Genomic variation within progenitors resulted in functional divergence of subgenomes. Global homoeologue expression dominance occurred between subgenomes of the allotriploid. Gene families related to ethylene biosynthesis and starch metabolism exhibited significant expansion at the pathway level and wide homoeologue expression dominance in the B-subgenome of the allotriploid. The independent origin of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) homoeologue gene pairs and tandem duplication-driven expansion of ACO genes in the B-subgenome contributed to rapid and major ethylene production post-harvest in allotriploid banana fruits. The findings of this study provide greater context for understanding fruit biology, and aid the development of tools for breeding optimal banana cultivars.
Project description:Carnation (Dianthus caryophyllus) is one of the most valuable commercial flowers, due to its richness of color and form, and its excellent storage and vase life. The diverse demands of the market require faster breeding in carnations. A full understanding of carnations is therefore required to guide the direction of breeding. Hence, we assembled the haplotype-resolved gap-free carnation genome of the variety 'Baltico', which is the most common white standard variety worldwide. Based on high-depth HiFi, ultra-long nanopore, and Hi-C sequencing data, we assembled the telomere-to-telomere (T2T) genome to be 564 479 117 and 568 266 215 bp for the two haplotypes Hap1 and Hap2, respectively. This T2T genome exhibited great improvement in genome assembly and annotation results compared with the former version. The improvements were seen when different approaches to evaluation were used. Our T2T genome first informs the analysis of the telomere and centromere region, enabling us to speculate about specific centromere characteristics that cannot be identified by high-order repeats in carnations. We analyzed allele-specific expression in three tissues and the relationship between genome architecture and gene expression in the haplotypes. This demonstrated that the length of the genes, coding sequences, and introns, the exon numbers and the transposable element insertions correlate with gene expression ratios and levels. The insertions of transposable elements repress expression in gene regulatory networks in carnation. This gap-free finished T2T carnation genome provides a valuable resource to illustrate the genome characteristics and for functional genomics analysis in further studies and molecular breeding.
Project description:We report the first RNA sequencing data of 1.25% chitosan-coated and uncoated (control) fruit of Musa acuminata (AAA Group, Subgroup Cavendish) at unripe (day 1) and ripe (day 7) stage
Project description:Banana is very important for both food and economic securities in many tropical and subtropical countries, because of its nutritional values. However, banana fruit is a climacteric fruit which has short shelf life, so an alternative method to delay its ripening is needed. Our group has used carrageenan as an edible coating to delay banana fruit ripening. In this study, the effect of different concentrations of carrageenan and storage temperatures on Cavendish banana shelf life and fruit quality was evaluated. The fruits were treated with 0.5%, 1.0%, and 1.5% carrageenan and stored at two different temperatures, 26°C and 20°C. Carrageenan functional groups in banana peel samples as well as changes in surface structure of banana peel, color, weight loss, pulp to peel ratio, total soluble solid, and levels of MaACS1 and MaACO1 gene expression were analyzed. Result showed that the optimum condition to extend shelf life and maintain fruit quality was by treating the banana fruits with 1.5% carrageenan and storing them at a cool temperature (20°C). In addition, the result obtained from this study suggested that carrageenan can be used as edible coating to extend the shelf life of banana fruits (Musa acuminata AAA group).
Project description:Musa acuminata is a main wild contributor to banana cultivars. Here, we reported a haplotype-resolved and telomere-to-telomere reference genome of M. acuminata by incorporating PacBio HiFi reads, Nanopore ultra-long reads, and Hi-C data. The genome size of the two haploid assemblies was estimated to be 469.83 Mb and 470.21 Mb, respectively. Multiple assessments confirmed the contiguity (contig N50: 16.53 Mb and 18.58 Mb; LAI: 20.18 and 19.48), completeness (BUSCOs: 98.57% and 98.57%), and correctness (QV: 45.97 and 46.12) of the genome. The repetitive sequences accounted for about half of the genome size. In total, 40,889 and 38,269 protein-coding genes were annotated in the two haploid assemblies, respectively, of which 9.56% and 3.37% were newly predicted. Genome comparison identified a large reciprocal translocation involving 3 Mb and 10 Mb from chromosomes 01 and 04 within M. acuminata. This reference genome of M. acuminata provides a valuable resource for further understanding of subgenome evolution of Musa species, and precise genetic improvement of banana.
Project description:The Quercus variabilis, a deciduous broadleaved tree species, holds significant ecological and economical value. While a chromosome-level genome for this species has been made available, it remains riddled with unanchored sequences and gaps. In this study, we present a nearly complete comprehensive telomere-to-telomere (T2T) and haplotype-resolved reference genome for Q. variabilis. This was achieved through the integration of ONT ultra-long reads, PacBio HiFi long reads, and Hi-C data. The resultant two haplotype genomes measure 789 Mb and 768 Mb in length, with a contig N50 of 65 Mb and 56 Mb, and were anchored to 12 allelic chromosomes. Within this T2T haplotype-resolved assembly, we predicted 36,830 and 36,370 protein-coding genes, with 95.9% and 96.0% functional annotation for each haplotype genome. The availability of the T2T and haplotype-resolved reference genome lays a solid foundation, not only for illustrating genome structure and functional genomics studies but also to inform and facilitate genetic breeding and improvement of cultivated Quercus species.