Project description:The water evaporation rate of 3D solar evaporator heavily relies on the water transport height of the evaporator. In this work, a 3D solar evaporator featuring a soil capillary-like structure is designed by surface coating native balsa wood using potassium hydroxide activated carbon (KAC). This KAC-coated wood evaporator can transport water up to 32 cm, surpassing that of native wood by ≈8 times. Moreover, under 1 kW m-2 solar radiation without wind, the KAC-coated wood evaporator exhibits a remarkable water evaporation rate of 25.3 kg m-2 h-1, ranking among the highest compared with other reported evaporators. The exceptional water transport capabilities of the KAC-coated wood should be attributed to the black and hydrophilic KAC film, which creates a porous network resembling a soil capillary structure to facilitate efficient water transport. In the porous network of coated KAC film, the small internal pores play a pivotal role in achieving rapid capillary condensation, while the larger interstitial channels store condensed water, further promoting water transport up more and micropore capillary condensation. Moreover, this innovative design demonstrates efficacy in retarding phenol from wastewater through absorption onto the coated KAC film, thus presenting a new avenue for high-efficiency clean water production.
Project description:Natural wood has served as a foundational material for buildings, furniture, and architectural structures for millennia, typically shaped through subtractive manufacturing techniques. However, this process often generates substantial wood waste, leading to material inefficiency and increased production costs. A potential opportunity arises if complex wood structures can be created through additive processes. Here, we demonstrate an additive-free, water-based ink made of lignin and cellulose, the primary building blocks of natural wood, that can be used to three-dimensional (3D) print architecturally designed wood structures via direct ink writing. The resulting printed structures, after heat treatment, closely resemble the visual, textural, olfactory, and macro-anisotropic properties, including mechanical properties, of natural wood. Our results pave the way for 3D-printed wooden construction with a sustainable pathway to upcycle/recycle natural wood.
Project description:Long-range charge transport is important for many applications like batteries, fuel cells, sensors, and catalysis. Obtaining microscopic insights into the atomistic mechanism is challenging, in particular if the underlying processes involve protons as the charge carriers. Here, large-scale reactive molecular dynamics simulations employing an efficient density-functional-theory-based neural network potential are used to unravel long-range proton transport mechanisms at solid-liquid interfaces, using the zinc oxide-water interface as a prototypical case. We find that the two most frequently occurring ZnO surface facets, (101[combining macron]0) and (112[combining macron]0), that typically dominate the morphologies of zinc oxide nanowires and nanoparticles, show markedly different proton conduction behaviors along the surface with respect to the number of possible proton transfer mechanisms, the role of the solvent for long-range proton migration, as well as the proton transport dimensionality. Understanding such surface-facet-specific mechanisms is crucial for an informed bottom-up approach for the functionalization and application of advanced oxide materials.
Project description:Screening high-efficiency 2D conjugated polymers toward visible-light-driven overall water splitting (OWS) is one of the most promising but challenging research directions to realize solar-to-hydrogen (STH) energy conversion and storage. "Mystery molecule" heptazine is an intriguing hydrogen evolution reaction (HER) building block. By covalently linking with the electron-rich alkynyl and phenyl oxygen evolution reaction (OER) active units, 10 experimentally feasible 2D covalent heptazine-based frameworks (CHFs) are constructed and screened four promising visible-light-driven OWS photocatalysts, which are linked by p-phenyl (CHF-4), p-phenylenediynyl (CHF-7), m-phenylenediynyl (CHF-8), and phenyltriynyl (CHF-9), respectively. Their HER and OER active sites achieve completely spatially separated, where HER active sites focus on heptazine units and OER active sites located on alkynyl or phenyl units. Their lower overpotentials allow them to spontaneously trigger the surface OWS reaction under their own light-induced bias without using any sacrificial agents and cocatalysts. Among them, CHF-7 shows the best photocatalytic performance with an ideal STH energy conversion efficiency estimated at 12.04%, indicating that it is a promising photocatalyst for industrial OWS. This work not only provides an innovative idea for the exploration of novel polymer photocatalysts for OWS but also supplies a direction for the development of heptazine derivatives.
Project description:The moisture uptake of wood is influenced by accessible hydroxyl groups acting as sorption sites and the water-available cell wall space. To what extent do these mechanisms control the moisture uptake in wood needs to be addressed. For this purpose, we modified sorption site density and cell wall space by wood treatments with acetic anhydride or formaldehyde and investigated their effects on moisture uptake. Chemical changes at the cell wall level caused by the treatments were first determined by confocal Raman imaging. Following this, the deuterium exchange method was used to gravimetrically measure the hydroxyl accessibility, while the moisture uptake and the consequent swelling of the wood were determined by dynamic measurements of mass and dimensions within the hygroscopic range. The results showed that the effectiveness in reducing the moisture content of untreated wood across the hygroscopic range differed between the anhydride- and formaldehyde-modified wood. We also observed a poor correlation of accessible hydroxyl concentration in formaldehyde-modified wood with weight percentage gain and water uptake. Moreover, the dynamic mass and dimension analysis indicated that the reduction in swelling in formalized wood was affected by an unidentified mechanism in addition to reduced moisture content.
Project description:The functions of many microbial communities exhibit remarkable stability despite fluctuations in the compositions of these communities. To date, a mechanistic understanding of this function-composition decoupling is lacking. Statistical mechanisms have been commonly hypothesized to explain such decoupling. Here, we proposed that dynamic mechanisms, mediated by horizontal gene transfer (HGT), also enable the independence of functions from the compositions of microbial communities. We combined theoretical analysis with numerical simulations to illustrate that HGT rates can determine the stability of gene abundance in microbial communities. We further validated these predictions using engineered microbial consortia of different complexities transferring one or more than a dozen clinically isolated plasmids, as well as through the reanalysis of data from the literature. Our results demonstrate a generalizable strategy to program the gene stability of microbial communities.
Project description:Membrane technology is an effective strategy for gas dehumidification and fuel cell humidification. In this study, cerium fluoride oxide (F-Ce) two-dimensional (2D) mesoporous nanosheets and their composite with 1-ethyl-3-methylimidazolium dicyanamide ([Emim][DCA]) ionic liquids (ILs) (IL@F-Ce) are introduced as fillers into polyether block amide (PEBAX® 1074) to fabricate mixed matrix membranes (MMMs). The slit-shaped mesoporous structure of the nanosheets facilitates the construction of water vapor rapid transport channels in MMMs. The permeability and selectivity of water vapor for MMMs loaded with F-Ce nanosheets are greatly improved, and the performance of MMMs loaded with IL@F-Ce nanosheets are much better than the former. Particularly, the MMM with IL@F-Ce content of 4 wt.% achieves the highest H2O permeability of 4.53 × 105 Barrer, which is more than twice that of the pure PEBAX membrane, and the selectivity is increased by 83%. Thus, the MMMs based on 2D mesoporous nanosheets have considerable potential application in industrial-scale dehydration and humidification processes.
Project description:Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a "layer strategy" in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk, it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part.
Project description:Many efforts undertaken to study the solvation process have led to general theories that may describe mean properties, but are unable to provide a detailed understanding at the molecular level. Remarkably, the basic question of how many solvent molecules are necessary to solvate one solute molecule is still open. By exploring several water aggregates of increasing complexity, in this contribution we employ semiclassical spectroscopy to determine on quantum dynamical grounds the minimal network of surrounding water molecules to make the central one display the same vibrational features of liquid water. We find out that double-acceptor double-donor tetrahedral coordination constituting the standard picture is necessary but not sufficient, and that particular care must be reserved for the quantum description of the combination band due to the coupling of the central monomer bending mode with network librations. It is actually our ability to investigate the combination band with a quantum-derived approach that allows us to answer the titular question. The minimal structure eventually responsible for proper solvation is made of a total of 21 water molecules and includes two complete solvation shells, of which the whole first one is tetrahedrally coordinated to the central molecule.
Project description:How does infarction in victims of stroke and other types of acute brain injury expand to its definitive size in subsequent days? Spontaneous depolarizations that repeatedly spread across the cerebral cortex, sometimes at remarkably regular intervals, occur in patients with all types of injury. Here, we show experimentally with in vivo real-time imaging that similar, spontaneous depolarizations cycle repeatedly around ischaemic lesions in the cerebral cortex, and enlarge the lesion in step with each cycle. This behaviour results in regular periodicity of depolarization when monitored at a single point in the lesion periphery. We present evidence from clinical monitoring to suggest that depolarizations may cycle in the ischaemic human brain, perhaps explaining progressive growth of infarction. Despite their apparent detrimental role in infarct growth, we argue that cycling of depolarizations around lesions might also initiate upregulation of the neurobiological responses involved in repair and remodelling.