Project description:Anthracnose caused by Colletotrichum is one of the most severe diseases that can afflict Camellia sinensis. However, research on the diversity and geographical distribution of Colletotrichum in China remain limited. In this study, 106 Colletotrichum isolates were collected from diseased leaves of Ca. sinensis cultivated in the 15 main tea production provinces in China. Multi-locus phylogenetic analysis coupled with morphological identification showed that the collected isolates belonged to 11 species, including 6 known species (C. camelliae, C. cliviae, C. fioriniae, C. fructicola, C. karstii, and C. siamense), 3 new record species (C. aenigma, C. endophytica, and C. truncatum), 1 novel species (C. wuxiense), and 1 indistinguishable strain, herein described as Colletotrichum sp. Of these species, C. camelliae and C. fructicola were the dominant species causing anthracnose in Ca. sinensis. In addition, our study provided further evidence that phylogenetic analysis using a combination of ApMat and GS sequences can be used to effectively resolve the taxonomic relationships within the C. gloeosporioides species complex. Finally, pathogenicity tests suggested that C. camelliae, C. aenigma, and C. endophytica are more invasive than other species after the inoculation of the leaves of Ca. sinensis.
Project description:MicroRNAs (miRNAs) are endogenous small RNAs playing a crucial role in plant growth and development, as well as stress responses. Among them, some are highly evolutionally conserved in the plant kingdom, this provide a powerful strategy for identifying miRNAs in a new species. Tea (Camellia sinensis) is one of the most important commercial beverage crops in the world, but only a limited number of miRNAs have been identified. In the present study, a total of 14 new C. sinensis miRNAs were identified by expressed sequence tag (EST) analysis from 47452 available C. sinensis ESTs. These miRNAs potentially target 51 mRNAs, which can act as transcription factors, and participate in stress response, transmembrane transport, and signal transduction. Analysis of gene ontology (GO), based on these targets, suggested that 37 biological processes were involved, such as oxidation-reduction process, stress response, and transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis inferred that the identified miRNAs took part in 13 metabolic networks. Our study will help further understanding of the essential roles of miRNAs in C. sinensis growth and development, and stress response.
Project description:Tea (Camellia sinensis (L.) O. Kuntze) is an important non-alcoholic commercial beverage crop. Tea tree is a perennial plant, and winter dormancy is its part of biological adaptation to environmental changes. We recently discovered a novel tea tree cultivar that can generate tender shoots in winter, but the regulatory mechanism of this ever-growing tender shoot development in winter is not clear. In this study, we conducted a proteomic analysis for identification of key genes and proteins differentially expressed between the winter and spring tender shoots, to explore the putative regulatory mechanisms and physiological basis of its ever-growing character during winter.
Project description:The history of tea is poorly known, mainly due to the questionable identification of decayed tea plants in archaeological samples. This paper attempts to test the utility of calciphytoliths (calcium oxalate crystals) for the identification of tea in archaeological samples. It provides the first survey of the macropatterns of calciphytoliths in several species of Theaceae and common non-Theaceae plants. Crystals were extracted from 45 samples of tea, Theaceae and common non-Theaceae plants, and detected microscopically between crossed polarizers. In tea plants, druse and trichome base are the most distinctive crystals. Druses have the smallest diameter (11.65 ± 3.64 μm), and trichome bases have four distinctive straight and regular cracks, similar to a regular extinction cross. The results provide morphological criteria for distinguishing tea from other plants, specifically the presence of identifiable druses together with calcified trichome bases. The implications are significant for understanding the history of tea and plant exploitation, especially for plants for which the preservation of macrofossils is poor.
Project description:In this study, it is noticeable that 32 tea-specific miRNAs were confirmed on the base of genome survey, using deep sequencing and microarray hybridization, and many miRNAs might associate with secondary metabolites synthesis. Leaves, buds and roots were collected
Project description:Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.
Project description:1. Methods for the separation and determination of the polyphenolic components of the tea plant by thin-layer chromatography and colorimetric reactions have been devised. 2. High concentrations of catechins, flavonols and depsides were found to be restricted to the young vegetative and floral shoots, whereas leucoanthocyanins or flavylogens were characteristic of the more bulky axial tissues of the plant. 3. In the young shoots cell growth was correlated with an increasing degree of flavonoid B-ring hydroxylation. 4. Maximal flavylogen concentrations occurred in the outer protective layers of stem and of seed coat. 5. Mature leaves were shown to contain derivatives of the flavones apigenin and luteolin. 6. Developing seedlings showed a steady increase in polyphenol complexity; flavylogens were concentrated at shoot and root apices and accumulated at the stem base. 7. It is postulated that the flavanols (leucoanthocyanins and catechins), because they can co-polymerize, are of use to the plant for protection of wood and bark against infection and decay.
Project description:The tea plant (Camellia sinensis) presents an excellent system to study evolution and diversification of the numerous classes, types and variable contents of specialized metabolites. Here, we investigate the relationship among C. sinensis phylogenetic groups and specialized metabolites using transcriptomic and metabolomic data on the fresh leaves collected from 136 representative tea accessions in China. We obtain 925,854 high-quality single-nucleotide polymorphisms (SNPs) enabling the refined grouping of the sampled tea accessions into five major clades. Untargeted metabolomic analyses detect 129 and 199 annotated metabolites that are differentially accumulated in different tea groups in positive and negative ionization modes, respectively. Each phylogenetic group contains signature metabolites. In particular, CSA tea accessions are featured with high accumulation of diverse classes of flavonoid compounds, such as flavanols, flavonol mono-/di-glycosides, proanthocyanidin dimers, and phenolic acids. Our results provide insights into the genetic and metabolite diversity and are useful for accelerated tea plant breeding.
Project description:Anthracnose causes severe losses of tea production in China. Although genes and biological processes involved in anthracnose resistance have been reported in other plants, the molecular response to anthracnose in tea plant is unknown. We used the susceptible tea cultivar Longjing 43 and the resistant cultivar Zhongcha 108 as materials and compared transcriptome changes in the leaves of both cultivars following Colletotrichum fructicola inoculation. In all, 9015 and 8624 genes were differentially expressed between the resistant and susceptible cultivars and their controls (0 h), respectively. In both cultivars, the differentially expressed genes (DEGs) were enriched in 215 pathways, including responses to sugar metabolism, phytohormones, reactive oxygen species (ROS), biotic stimuli and signalling, transmembrane transporter activity, protease activity and signalling receptor activity, but DEG expression levels were higher in Zhongcha 108 than in Longjing 43. Moreover, functional enrichment analysis of the DEGs showed that hydrogen peroxide (H2O2) metabolism, cell death, secondary metabolism, and carbohydrate metabolism are involved in the defence of Zhongcha 108, and 88 key genes were identified. Protein-protein interaction (PPI) network demonstrated that putative mitogen-activated protein kinase (MAPK) cascades are activated by resistance (R) genes and mediate downstream defence responses. Histochemical analysis subsequently validated the strong hypersensitive response (HR) and H2O2 accumulation that occurred around the hyphal infection sites in Zhongcha 108. Overall, our results indicate that the HR and H2O2 are critical mechanisms in tea plant defence against anthracnose and may be activated by R genes via MAPK cascades.
Project description:BackgroundDespite great advances in genomic technology observed in several crop species, the availability of molecular tools such as microsatellite markers has been limited in tea (Camellia sinensis L.). The development of microsatellite markers will have a major impact on genetic analysis, gene mapping and marker assisted breeding. Unigene derived microsatellite (UGMS) markers identified from publicly available sequence database have the advantage of assaying variation in the expressed component of the genome with unique identity and position. Therefore, they can serve as efficient and cost effective alternative markers in such species.ResultsConsidering the multiple advantages of UGMS markers, 1,223 unigenes were predicted from 2,181 expressed sequence tags (ESTs) of tea (Camellia sinensis L.). A total of 109 (8.9%) unigenes containing 120 SSRs were identified. SSR abundance was one in every 3.55 kb of EST sequences. The microsatellites mainly comprised of di (50.8%), tri (30.8%), tetra (6.6%), penta (7.5%) and few hexa (4.1%) nucleotide repeats. Among the dinucleotide repeats, (GA)n.(TC)n were most abundant (83.6%). Ninety six primer pairs could be designed form 83.5% of SSR containing unigenes. Of these, 61 (63.5%) primer pairs were experimentally validated and used to investigate the genetic diversity among the 34 accessions of different Camellia spp. Fifty one primer pairs (83.6%) were successfully cross transferred to the related species at various levels. Functional annotation of the unigenes containing SSRs was done through gene ontology (GO) characterization. Thirty six (60%) of them revealed significant sequence similarity with the known/putative proteins of Arabidopsis thaliana. Polymorphism information content (PIC) ranged from 0.018 to 0.972 with a mean value of 0.497. The average heterozygosity expected (HE) and observed (Ho) obtained was 0.654 and 0.413 respectively, thereby suggesting highly heterogeneous nature of tea. Further, test for IAM and SMM models for the UGMS loci showed excess heterozygosity and did not show any bottleneck operating in the tea population.ConclusionUGMS markers identified and characterized in this study provided insight about the abundance and distribution of SSR in the expressed genome of C. sinensis. The identification and validation of 61 new UGMS markers will not only help in intra and inter specific genetic diversity assessment but also be enriching limited microsatellite markers resource in tea. Further, the use of these markers would reduce the cost and facilitate the gene mapping and marker-aided selection in tea. Since, 36 of these UGMS markers correspond to the Arabidopsis protein sequence data with known functions will offer the opportunity to investigate the consequences of SSR polymorphism on gene functions.