Project description:The dataset of simultaneous 64-channel electroencephalography (EEG) and high-speed eye-tracking (ET) recordings was collected from 31 professional athletes and 43 college students during alertness behavior task (ABT) and concentration cognitive task (CCT). The CCT experiment lasting 1–2 hours included five sessions for groups of the Shooting, Archery and Modern Pentathlon elite athletes and the controls. Concentration targets included shooting target and combination target with or without 24 different directions of visual distractors and 2 types of music distractors. Meditation and Schulte Grid trainings were done as interventions. Analysis of the dataset aimed to extract effective biological markers of eye movement and EEG that can assess the concentration level of talented athletes compared with same-aged controls. Moreover, this dataset is useful for the research of related visual brain-computer interfaces. Measurement(s)brain activity and eye movements measurementTechnology Type(s)electroencephalography and eye-trackingFactor Type(s)electroencephalography (EEG) • eye-tracking (ET)Sample Characteristic - OrganismHumanSample Characteristic - LocationChina
Project description:IntroductionMany goal-directed and spontaneous everyday activities (e.g., planning, mind wandering) rely on an internal focus of attention. Internally directed cognition (IDC) was shown to differ from externally directed cognition in a range of neurophysiological indicators such as electroencephalogram (EEG) alpha activity and eye behavior.MethodsIn this EEG-eye-tracking coregistration study, we investigated effects of attention direction on EEG alpha activity and various relevant eye parameters. We used an established paradigm to manipulate internal attention demands in the visual domain within tasks by means of conditional stimulus masking.ResultsConsistent with previous research, IDC involved relatively higher EEG alpha activity (lower alpha desynchronization) at posterior cortical sites. Moreover, IDC was characterized by greater pupil diameter (PD), fewer microsaccades, fixations, and saccades. These findings show that internal versus external cognition is associated with robust differences in several indicators at the neural and perceptual level. In a second line of analysis, we explored the intrinsic temporal covariation between EEG alpha activity and eye parameters during rest. This analysis revealed a positive correlation of EEG alpha power with PD especially in bilateral parieto-occipital regions.ConclusionTogether, these findings suggest that EEG alpha activity and PD represent time-sensitive indicators of internal attention demands, which may be involved in a neurophysiological gating mechanism serving to shield internal cognition from irrelevant sensory information.
Project description:ObjectiveDistractions inordinately impair attention in children with Attention-Deficit Hyperactivity Disorder (ADHD) but examining this behavior under real-life conditions poses a challenge for researchers and clinicians. Virtual reality (VR) technologies may mitigate the limitations of traditional laboratory methods by providing a more ecologically relevant experience. The use of eye-tracking measures to assess attentional functioning in a VR context in ADHD is novel. In this proof of principle project, we evaluate the temporal dynamics of distraction via eye-tracking measures in a VR classroom setting with 20 children diagnosed with ADHD between 8 and 12 years of age.MethodWe recorded continuous eye movements while participants performed math, Stroop, and continuous performance test (CPT) tasks with a series of "real-world" classroom distractors presented. We analyzed the impact of the distractors on rates of on-task performance and on-task, eye-gaze (i.e., looking at a classroom whiteboard) versus off-task eye-gaze (i.e., looking away from the whiteboard).ResultsWe found that while children did not always look at distractors themselves for long periods of time, the presence of a distractor disrupted on-task gaze at task-relevant whiteboard stimuli and lowered rates of task performance. This suggests that children with attention deficits may have a hard time returning to tasks once those tasks are interrupted, even if the distractor itself does not hold attention. Eye-tracking measures within the VR context can reveal rich information about attentional disruption.ConclusionsLeveraging virtual reality technology in combination with eye-tracking measures is well-suited to advance the understanding of mechanisms underlying attentional impairment in naturalistic settings. Assessment within these immersive and well-controlled simulated environments provides new options for increasing our understanding of distractibility and its potential impact on the development of interventions for children with ADHD.
Project description:Background/Introduction: Concurrent electroencephalography and resting-state functional magnetic resonance imaging (rsfMRI) have been widely used for studying the (presumably) awake and alert human brain with high temporal/spatial resolution. Although rsfMRI scans are typically collected while individuals are instructed to focus their eyes on a fixated cross, objective and verified experimental measures to quantify degree of vigilance are not readily available. Electroencephalography (EEG) is the modality extensively used for estimating vigilance, especially during eyes-closed resting state. However, pupil size measured using an eye-tracker device could provide an indirect index of vigilance. Methods: Three 12-min resting scans (eyes open, fixating on the cross) were collected from 10 healthy control participants. We simultaneously collected EEG, fMRI, physiological, and eye-tracker data and investigated the correlation between EEG features, pupil size, and heart rate. Furthermore, we used pupil size and EEG features as regressors to find their correlations with blood-oxygen-level-dependent fMRI measures. Results: EEG frontal and occipital beta power (FOBP) correlates with pupil size changes, an indirect index for locus coeruleus activity implicated in vigilance regulation (r = 0.306, p < 0.001). Moreover, FOBP also correlated with heart rate (r = 0.255, p < 0.001), as well as several brain regions in the anticorrelated network, including the bilateral insula and inferior parietal lobule. Discussion: In this study, we investigated whether simultaneous EEG-fMRI combined with eye-tracker measurements can be used to determine EEG signal feature associated with vigilance measures during eyes-open rsfMRI. Our results support the conclusion that FOBP is an objective measure of vigilance in healthy human subjects. Impact statement We revealed an association between electroencephalography frontal and occipital beta power (FOBP) and pupil size changes during an eyes-open resting state, which supports the conclusion that FOBP could serve as an objective measure of vigilance in healthy human subjects. The results were validated by using simultaneously recorded heart rate and functional magnetic resonance imaging (fMRI). Interestingly, independently verified heart rate changes can also provide an easy-to-determine measure of vigilance during resting-state fMRI. These findings have important implications for an analysis and interpretation of dynamic resting-state fMRI connectivity studies in health and disease.
Project description:We present the Zurich Cognitive Language Processing Corpus (ZuCo), a dataset combining electroencephalography (EEG) and eye-tracking recordings from subjects reading natural sentences. ZuCo includes high-density EEG and eye-tracking data of 12 healthy adult native English speakers, each reading natural English text for 4-6 hours. The recordings span two normal reading tasks and one task-specific reading task, resulting in a dataset that encompasses EEG and eye-tracking data of 21,629 words in 1107 sentences and 154,173 fixations. We believe that this dataset represents a valuable resource for natural language processing (NLP). The EEG and eye-tracking signals lend themselves to train improved machine-learning models for various tasks, in particular for information extraction tasks such as entity and relation extraction and sentiment analysis. Moreover, this dataset is useful for advancing research into the human reading and language understanding process at the level of brain activity and eye-movement.
Project description:IntroductionEarly identification of Autism Spectrum Disorder (ASD) is critical for effective intervention. Restricted interests (RIs), a subset of repetitive behaviors, are a prominent but underutilized domain for early ASD diagnosis. This study aimed to identify objective biomarkers for ASD by integrating electroencephalography (EEG) and eye-tracking (ET) to analyze toddlers' visual attention and cortical responses to RI versus neutral interest (NI) objects.MethodsThe study involved 59 toddlers aged 2-4 years, including 32 with ASD and 27 non-ASD controls. Participants underwent a 24-object passive viewing paradigm, featuring RI (e.g., transportation items) and NI objects (e.g., balloons). ET metrics (fixation time and pupil size) and EEG time-frequency (TF) power in theta (4-8 Hz) and alpha (8-13 Hz) bands were analyzed. Statistical methods included logistic regression models to assess the predictive potential of combined EEG and ET biomarkers.ResultsToddlers with ASD exhibited significantly increased fixation times and pupil sizes for RI objects compared to NI objects, alongside distinct EEG patterns with elevated theta and reduced alpha power in occipital regions during RI stimuli. The multimodal logistic regression model, incorporating EEG and ET metrics, achieved an area under the curve (AUC) of 0.75, demonstrating robust predictive capability for ASD.DiscussionThis novel integration of ET and EEG metrics highlights the potential of RIs as diagnostic markers for ASD. The observed neural and attentional distinctions underscore the utility of multimodal biomarkers for early diagnosis and personalized intervention strategies. Future work should validate findings across broader age ranges and diverse populations.
Project description:The existing performance evaluation methods in robot-assisted surgery (RAS) are mainly subjective, costly, and affected by shortcomings such as the inconsistency of results and dependency on the raters' opinions. The aim of this study was to develop models for an objective evaluation of performance and rate of learning RAS skills while practicing surgical simulator tasks. The electroencephalogram (EEG) and eye-tracking data were recorded from 26 subjects while performing Tubes, Suture Sponge, and Dots and Needles tasks. Performance scores were generated by the simulator program. The functional brain networks were extracted using EEG data and coherence analysis. Then these networks, along with community detection analysis, facilitated the extraction of average search information and average temporal flexibility features at 21 Brodmann areas (BA) and four band frequencies. Twelve eye-tracking features were extracted and used to develop linear random intercept models for performance evaluation and multivariate linear regression models for the evaluation of the learning rate. Results showed that subject-wise standardization of features improved the R2 of the models. Average pupil diameter and rate of saccade were associated with performance in the Tubes task (multivariate analysis; p-value = 0.01 and p-value = 0.04, respectively). Entropy of pupil diameter was associated with performance in Dots and Needles task (multivariate analysis; p-value = 0.01). Average temporal flexibility and search information in several BAs and band frequencies were associated with performance and rate of learning. The models may be used to objectify performance and learning rate evaluation in RAS once validated with a broader sample size and tasks.
Project description:We determined the spatio-temporal dynamics of cortical gamma-oscillations modulated during eye movement tasks, using simultaneous eye tracking and intracranial electrocorticography (ECoG) recording. Patients with focal epilepsy were instructed to follow a target moving intermittently and unpredictably from one place to another either in an instantaneous or smooth fashion during extraoperative ECoG recording. Target motion elicited augmentation of gamma-oscillations in the lateral, inferior and polar occipital regions in addition to portions of parietal and frontal regions; subsequent voluntary eye movements elicited gamma-augmentation in the medial occipital region. Such occipital gamma-augmentations could not be explained by contaminations of ocular or myogenic artifacts. The degree of gamma-augmentation was generally larger during saccade compared to pursuit trials, while a portion of the polar occipital region showed pursuit-preferential gamma-augmentations. In addition to the aforementioned eye movement task, patients were asked to read a single word popping up on the screen. Gamma-augmentation was elicited in widespread occipital regions following word presentation, while gamma-augmentation in the anterior portion of the medial occipital region was elicited by an involuntary saccade following word presentation rather than word presentation itself. Gamma-augmentation in the lateral, inferior and polar occipital regions can be explained by increased attention to a moving target, whereas gamma-augmentation in the anterior-medial occipital region may be elicited by images in the peripheral field realigned following saccades. In functional studies comparing brain activation between two tasks, eye movement patterns during tasks may need to be considered as confounding factors.
Project description:This article presents concurrent multimodal data, including EEG, eye-tracking, and behavioral data (cursor movements and clicks), acquired from individuals (N = 22) while engaging in several German language lessons using the web-based Duolingo interface. Lessons were restricted to visual learning only (excluding audio and speech components), including reading and writing vocabulary words and sentences, and matching vocabulary to images. EEG data was collected using the open-source OpenBCI device utilizing dry Ag-AgCl electrodes, while eye-tracking data was recorded using the Gazepoint GP3 system. Timestamped screen captures associated with mouse click and keypress events and user behavior (cursor movements) were acquired using AutoHotKey macro scripts. These data provide neural (EEG), gaze (eye-tracking), and behavioral (mouse movements, clicks, and keypresses) data, with respect to presented language-learning media (Duolingo screen captures) for a wide range of possible scientific analyses and methods development.
Project description:BackgroundPhysical cooling of the eye surface relieves ocular discomfort, but translating this event to drug treatment of dry eye discomfort not been studied. Here, we synthesized a water-soluble TRPM8 receptor agonist called cryosim-3 (C3, 1-diisopropylphosphorylnonane) which selectively activates TRPM8 (linked to cooling) but not TRPV1 or TRPA1 (linked to nociception) and tested C3 in subjects with mild forms of dry eye disease.MethodsA set of 1-dialkylphosphoryalkanes were tested for activation of TRPM8, TRPV1 and TRPA1 receptors in transfected cells. The bioactivity profiles were compared by perioral, topical, and intravenous delivery to anesthetized rats. The selected lead candidate C3 or vehicle (water) was applied with a cotton gauze pad to upper eyelids of patients with dry eye disease (n = 30). Cooling sensation, tear film break-up time (TBUT), basal tear secretion, and corneal staining were evaluated. C3 was then applied four times daily for 2 weeks to patients using a pre-loaded single unit applicator containing 2 mg/mL of C3 in water (n = 20) or water only. TBUT, basal tear secretion, and corneal staining, and three questionnaires surveys of ocular discomfort (VAS scale, OSDI, and CVS symptoms) were analyzed before and at 1 and 2 weeks thereafter.ResultsC3 was a selective and potent TRPM8 agonist without TRPV1 or TRPA1 activity. In test animals, the absence of shaking behavior after C3 perioral administration made it the first choice for further study. C3 increased tear secretion in an animal model of dry eye disease and did not irritate when wiped on eyes of volunteers. C3 singly applied (2 mg/ml) produced significant cooling in <5 min, an effecting lasting 46 min with an increase in tear secretion for 60 min. C3 applied for 2 weeks also significantly increased basal tear secretion with questionnaire surveys of ocular discomfort indices clearly showing improvement of symptoms at 1 and 2 weeks. No complaints of irritation or pain were reported by any subject.ConclusionsC3 is a promising candidate for study of TRPM8 function on the eye surface and for relief of dry eye discomfort.Trial registrationISRCTN24802609 and ISRCTN13359367 . Registered 23 March 2015 and 2 September 2015.