Project description:Human U937 cells were maintained in RPMI 1640 media. Solenopsin B added at a concentration equivalent to the IC50, 13 micro Molar. Triplicate cultures were prepared at two separate time points, 1 and 6 hours. Keywords: Transcriptosome analysis employing DNA/cDNA glass microarray.
Project description:Human U937 cells were maintained in RPMI 1640 media. Solenopsin B added at a concentration equivalent to the IC50, 13 micro Molar. Triplicate cultures were prepared at two separate time points, 1 and 6 hours. Keywords: Transcriptosome analysis employing DNA/cDNA glass microarray. Two-condition experiment, U937 cell and Sol B treated U937 cells at two time points: 1 and 6 hours post exposure. Biological replicates: 3, independently grown and harvested. One replicate per array.
Project description:Biofilm formation on exposed surfaces is a serious issue for the food industry and medical health facilities. There are many proposed strategies to delay, reduce, or even eliminate biofilm formation on surfaces. The present study focuses on the applicability of fire ant venom alkaloids (aka 'solenopsins', from Solenopsis invicta) tested on polystyrene and stainless steel surfaces relative to the adhesion and biofilm-formation by the bacterium Pseudomonas fluorescens. Conditioning with solenopsins demonstrates significant reduction of bacterial adhesion. Inhibition rates were 62.7% on polystyrene and 59.0% on stainless steel surfaces. In addition, solenopsins drastically reduced cell populations already growing on conditioned surfaces. Contrary to assumptions by previous authors, solenopsins tested negative for amphipathic properties, thus understanding the mechanisms behind the observed effects still relies on further investigation.
Project description:In the United States, imported fire ants are often referred to as red imported fire ants, Solenopsis invicta Buren, black imported fire ants, S. richteri Forel, and their hybrid (S. invicta × S. richteri). Due to their aggressive stings and toxic venom, imported fire ants pose a significant threat to public health, agriculture, and ecosystem health. However, venom plays a vital role in the survival of fire ants by serving various crucial functions in defense, foraging, and colony health maintenance. Numerous reviews and book chapters have been published on fire ant venom. Due to its medical importance and the expanding global distribution of these ants, fire ant venom research remains an active and highly productive area, leading to the discovery of new components and functions. This review summarizes the recent advances in our understanding of fire ant venom chemistry and its functions within fire ant colonies.
Project description:Fire ants are widely studied, invasive and venomous arthropod pests. There is significant biomedical interest in immunotherapy against fire ant stings. However, mainly due to practical reasons, the physiological effects of envenomation has remained poorly characterized. The present study takes advantage of a recently-described venom protein extract to delineate the immunological pathways underlying the allergic reaction to fire ant venom toxins. Mice were injected with controlled doses of venom protein extract. Following sensitization and a second exposure, a marked footpad swelling was observed. Based on eosinophil recruitment and production of Th2 cytokines, we hereby establish that fire ant proteins per se can lead to an allergic response, which casts a new light into the mechanism of action of these toxins.
Project description:A major challenge in broader clinical application of Jack Jumper ant venom immunotherapy (JJA VIT) is the scarcity of ant venom which needs to be manually harvested from wild ants. Adjuvants are commonly used for antigen sparing in other vaccines, and thereby could potentially have major benefits to extend JJA supplies if they were to similarly enhance JJA VIT immunogenicity. The purpose of this study was to evaluate the physicochemical and microbiological stability and murine immunogenicity of low-dose JJA VIT formulated with a novel polysaccharide adjuvant referred to as delta inulin or Advax™. Jack Jumper ant venom (JJAV) protein stability was assessed by UPLC-UV, SDS-PAGE, SDS-PAGE immunoblot, and ELISA inhibition. Diffraction light scattering was used to assess particle size distribution of Advax; pH and benzyl alcohol quantification by UPLC-UV were used to assess the physicochemical stability of JJAV diluent, and endotoxin content and preservative efficacy test was used to investigate the microbiological properties of the adjuvanted VIT formulation. To assess the effect of adjuvant on JJA venom immunogenicity, mice were immunised four times with JJAV alone or formulated with Advax adjuvant. JJA VIT formulated with Advax was found to be physicochemically and microbiologically stable for at least 2 days when stored at 4 and 25 °C with a trend for an increase in allergenic potency observed beyond 2 days of storage. Low-dose JJAV formulated with Advax adjuvant induced significantly higher JJAV-specific IgG than a 5-fold higher dose of JJAV alone, consistent with a powerful allergen-sparing effect. The pharmaceutical data provides important guidance on the formulation, storage and use of JJA VIT formulated with Advax adjuvant, with the murine immunogenicity studies providing a strong rationale for a planned clinical trial to test the ability of Advax adjuvant to achieve 4-fold JJAV dose sparing in JJA-allergic human patients.
Project description:2,6-dialkylpiperideines found in the venom of Solenopsis (Hymenoptera, Formicidae) fire ants are a range of compounds possessing various biological activities. A series of racemic 2-methyl-6-alkyl-Δ1,6-piperideines were synthesized for chemical confirmation of the natural products found in fire ant venom, and the evaluation of their biological activity. Synthetic Δ1,6-piperideines and the natural compounds in the cis-alkaloid fraction of Solenopsis invicta had identical mass spectra and retention times. Their insecticidal activities against the third-instar larvae of cotton bollworm (Helicoverpa armigera) were evaluated by using injection and topical application methods. All three compounds exhibited no lethal effect at concentrations of 0.05-0.4 mol/L by topical treatment, but moderate lethal effect at 0.4 mol/L through injection treatment. Compound 6a showed significantly higher activity than the natural insecticide nicotine. The differences in activity among compounds 6b, 6c and nicotine were not significant. The elongation of the carbon chain at the 6-position of the piperideine ring appears to decrease insecticidal activity.
Project description:Active matter, which includes crowds of organisms, is composed of constituents that independently consume and dissipate energy. Some active matter systems have been shown to sustain the propagation of various types of waves, resulting from the interplay between density and alignment. Here, we examine a type of solitary wave in dense two-dimensional columns of Solenopsis invicta, fire ants, in which the local activity, density and alignment all play a key role. We demonstrate that these waves are nonlinear and that they are composed of aligned ants that are constrained at the top by the time it takes disordered ants to activate and align and at the bottom by a density minimum enforced by gravity. Our results suggest that intrinsically switchable activity can be a productive framework to understand and trigger a broad range of wave-like behaviors, including stampedes in crowds and herds.
Project description:Prevailing drug resistance in malaria imposes the major roadblock for the existing interventions necessitating the timely need to search for alternative therapies. Ants in Solenopsis spp, termed 'Fire ants', are well known for their aggressive behavior, which leads to the release of toxic venom. Notably, the tribal natives of the malaria-laden densely forested Bastar region, Chhattisgarh, India, use fire ant sting-based therapy to cure malaria-like high fever. Inspired by this, we have collected the fire ants from the forest of Bastar and extracted peptide and alkaloid fractions from ant venom using HPLC and analyzed them by LC/MS-based applications. Evaluation of the anti-malarial efficacy of these peptide fractions demonstrated a significant reduction in the growth of Plasmodium falciparum (Pf 3D7) in vitro, whereas the alkaloid fraction showed a negligible effect. in vitro hemolytic activity confirmed the venom peptide fraction to be non-hemolytic. Additionally, the venom peptide fraction is purely non-toxic to HepG2 cells. Anti-malarial efficiency of the same in Plasmodium berghei ANKA infected mice models showed a drastic reduction in parasitemia representing promising anti-malarial activity. Overall, our study has unraveled the scientific rationale underlying fire ant sting therapy used as a tribal naturotherapy for curing malaria-like fever, thus, introducing a way forward to develop nature-inspired anti-malarial chemotherapeutics.