Project description:Although previous studies have shed light on the etiology of cervical cancer, metastasis of advanced cervical cancer remains the main reason for the poor outcome and high cancer-related mortality rate. Cervical cancer cells closely communicate with immune cells recruited to the tumor microenvironment (TME), such as lymphocytes, tumor-associated macrophages, and myeloid-derived suppressor cells. The crosstalk between tumors and immune cells has been clearly shown to foster metastatic dissemination. Therefore, unraveling the mechanisms of tumor metastasis is crucial to develop more effective therapies. In this review, we interpret several characteristics of the TME that promote the lymphatic metastasis of cervical cancer, such as immune suppression and premetastatic niche formation. Furthermore, we summarize the complex interactions between tumor cells and immune cells within the TME, as well as potential therapeutic strategies to target the TME.
Project description:BackgroundLymphatic metastasis is the major challenge in the treatment of penile cancer. The prognosis of individuals with lymphatic metastasis is extremely poor. Therefore, early identification of disease progression and lymphatic metastasis is an urgent task for researchers in penile cancer worldwide.MethodsIn this study, using single-cell RNA sequencing, an immune landscape was established for the cancer ecosystem based on 46,861 cells from six patients with penile cancer (four with lymphatic metastasis [stage IV] and two without lymphatic metastasis [stage I]). Using bulk RNA sequencing, the discrepancy between the cancers and their respective metastatic lymph nodes was depicted based on seven patients with penile cancer.ResultsThe interaction between epithelial cells, fibroblasts, and endothelial cells, and the functional cooperation among invasion, epithelial-mesenchymal transition, and angiogenesis were found to be important landscapes in the penile cancer ecosystem, playing important roles in progression of cancer and lymph node metastasis.ConclusionsThis study is the first to investigate the altered tumor microenvironment heterogeneity of penile cancer as it evolves from non-lymphatic to lymphatic metastasis and provides insights into the mechanisms underlying malignant progression, the premetastatic niche, and lymphatic metastasis in penile cancer.
Project description:BackgroundAs lymphatic vessel is a major route for solid tumor metastasis, they are considered an essential part of tumor drainage conduits. Apart from forming the walls of lymphatic vessels, lymphatic endothelial cells (LECs) have been found to play multiple other roles in the tumor microenvironment, calling for a more in-depth review. We hope that this review may help researchers gain a detailed understanding of this fast-developing field and shed some light upon future research.MethodsTo achieve an informative review of recent advance, we carefully searched the Medline database for English literature that are openly published from the January 1995 to December 2020 and covered the topic of LEC or lymphangiogenesis in tumor progression and therapies. Two different authors independently examined the literature abstracts to exclude possible unqualified ones, and 310 papers with full texts were finally retrieved.ResultsIn this paper, we discussed the structural and molecular basis of tumor-associated LECs, together with their roles in tumor metastasis and drug therapy. We then focused on their impacts on tumor cells, tumor stroma, and anti-tumor immunity, and the molecular and cellular mechanisms involved. Special emphasis on lung cancer and possible therapeutic targets based on LECs were also discussed.ConclusionsLECs can play a much more complex role than simply forming conduits for tumor cell dissemination. Therapies targeting tumor-associated lymphatics for lung cancer and other tumors are promising, but more research is needed to clarify the mechanisms involved.
Project description:Metastasis and growth in neoplastic lesions requires the multistep regulation of microenvironmental factors. We aimed to elucidate the microenvironmental changes in the process of lymphatic metastasis of lung squamous cell carcinoma. We examined the morphological characteristics of 102 cases of primary tumor (PT), 50 of intralymphatic tumor (ILT), 51 of lymph node (LN) micrometastasis (LN-Mic; ≤2 mm in size), and 82 of LN macrometastasis (LN-Mac; ≥10 mm in size). Afterwards we evaluated the expression of nine molecules (epidermal growth factor receptor, fibroblast growth factor receptor 2, CD44, aldehyde dehydrogenase 1, Podoplanin, E-cadherin, S100A4, geminin, and ezrin) in matched PT, ILT, LN-Mic, and LN-Mac from 23 of these cases. The number of smooth muscle actin α-positive fibroblasts, CD34-positive microvessels and CD204-positive macrophages were also examined. As a result, the mitotic index of tumor cells was significantly lower in ILT and LN-Mic than PT and LN-Mac (P < 0.001). Moreover, stromal reaction in ILT and LN-Mic was less prominent than in PT and LN-Mac (P < 0.001). Immunohistochemical study revealed that epidermal growth factor receptor expression level and frequency of geminin-positive cells in ILT and LN-Mic were significantly lower than in PT and LN-Mac (P < 0.05). The number of stromal cells indicated by staining of CD34, CD204, and smooth muscle actin α in ILT and LN-Mic was also significantly lower than in PT and LN-Mac (P < 0.05). In lung squamous cell carcinoma, drastic microenvironmental changes (e.g., growth factor receptor expression and proliferative capacity of tumor cells and structural changes in stromal cells) occur during both the process of lymphatic permeation and the progression into macrometastases.
Project description:Lymphangiogenesis in tumors provides an auxiliary route for cancer cell invasion to drainage lymph nodes, facilitating the development of lymphatic metastasis (LM). However, the mechanisms governing tumor lymphangiogenesis and lymphatic permeability in gastric cancer (GC) remain largely unknown. Here, the unprecedented role and mechanism of cysteine-rich intestinal protein-1 (CRIP1) in mediating the development of GC LM is uncovered. A series of assays are performed to identify downstream targets of CRIP1, and rescue experiments are performed to confirm the effects of this regulatory axis on LM. CRIP1 overexpression facilitates LM in GC by promoting lymphangiogenesis and lymphatic vessel permeability. CRIP1 promotes phosphorylation of cAMP responsive element binding protein 1(CREB1), which then mediates vascular endothelial growth factor C (VEGFC) expression necessary for CRIP1-induced lymphangiogenesis and transcriptionally promotes C-C motif chemokine ligand 5 (CCL5) expression. CCL5 recruits macrophages to promote tumor necrosis factor alpha (TNF-α) secretion, eventually enhancing lymphatic permeability. The study highlights CRIP1 regulates the tumor microenvironment to promote lymphangiogenesis and LM in GC. Considering the current limited understanding of LM development in GC, these pathways provide potential targets for future therapeutics.
Project description:One person on three will receive a diagnostic of cancer during his life. About one third of them will die of the disease. In most cases, death will result from the formation of distal secondary sites called metastases. Several events that lead to cancer are under genetic control. In particular, cancer initiation is tightly associated with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations lead to unrestrained growth of the primary neoplasm and a propensity to detach and to progress through the subsequent steps of metastatic dissemination. This process depends tightly on the surrounding microenvironment. In fact, several studies support the point that tumour development relies on a continuous cross-talk between cancer cells and their cellular and extracellular microenvironments. This signaling cross-talk is mediated by transmembrane receptors expressed on cancer cells and stromal cells. The aim of this manuscript is to review how the cancer microenvironment influences the journey of a metastatic cell taking liver invasion by colorectal cancer cells as a model.
Project description:Cervical cancer is the fourth most common type of cancer incidence in the world female population, and it has become a public health problem worldwide. Several factors are involved in this type of cancer, including intrinsic factors related to the inflammatory process, such as extracellular nucleotides and adenosine-components of the purinergic system. The present review focuses on the role of the purinergic system in cervical cancer, especially regarding the interaction of extracellular nucleotides with their respective receptors expressed in the tumor microenvironment of cervical cancer and their role in the host immune response. The high concentrations of extracellular nucleotides in the tumor microenvironment of cervical cancer interfere in the regulation, proliferation, differentiation, and apoptosis of cancer cells of the uterine cervix through different P1 and P2 receptor subtypes. Such diverse cellular processes that are mediated by adenosine triphosphate and adenosine across the tumor microenvironment and that also have effects on host immune defense will be reviewed here in detail.
Project description:Pancreatic cancer is a deadly disease with high mortality due to difficulties in its early diagnosis and metastasis. The tumor microenvironment induced by interactions between pancreatic epithelial/cancer cells and stromal cells is critical for pancreatic cancer progression and has been implicated in the failure of chemotherapy, radiation therapy and immunotherapy. Microenvironment formation requires interactions between pancreatic cancer cells and stromal cells. Components of the pancreatic cancer microenvironment that contribute to desmoplasia and immunosuppression are associated with poor patient prognosis. These components can facilitate desmoplasia and immunosuppression in primary and metastatic sites or can promote metastasis by stimulating angiogenesis/lymphangiogenesis, epithelial-mesenchymal transition, invasion/migration, and pre-metastatic niche formation. Some molecules participate in both microenvironment formation and metastasis. In this review, we focus on the mechanisms of pancreatic cancer microenvironment formation and discuss how the pancreatic cancer microenvironment participates in metastasis, representing a potential target for combination therapy to enhance overall survival.
Project description:AbstractBrain metastasis (BM) is the leading cause of mortality in lung cancer patients. The process of BM (from initial primary tumor development, migration and intravasation, dissemination and survival in the bloodstream, extravasation, to colonization and growth to metastases) is a complex process for which few tumor cells complete the entire process. Recent research on BM of lung cancer has recently stressed the essential role of tumor microenvironment (TME) in assisting tumor cells in the completion of each BM step. This review summarizes recent studies regarding the effects of TME on tumor cells in the entire process of BM derived from lung cancer. The identification of vulnerable targets in the TME and their prospects to provide novel therapeutic opportunities are also discussed.